RESUMEN
BACKGROUND: The purpose of this study was to investigate the utility and clinical impact of second-opinion interpretations of outside neuroimaging studies by oncologic neuroradiologists at a National Cancer Institute-designated cancer center. METHODS: We performed a retrospective analysis of initial outside and second-opinion radiology reports from 300 computed tomography and magnetic resonance imaging studies and identified cases with discrepancies between the two reports. An adult neuro-oncologist, pediatric neuro-oncologist, and head and neck surgeon reviewed each pair of discrepant reports based on their area of expertise, patient age, and the type of study performed. The clinicians were blinded to the origin of each report and recorded whether the differences in the reports would have led to a change in patient management and/or disease staging. Histopathologic analysis, clinical assessment, and/or minimum 3-month imaging follow-up served as the reference standards to establish which of the 2 reports was correct. RESULTS: Among the 283 cases that met our study criteria, there were 55 neuroimaging studies with disagreements (19%) between the initial outside report and second-opinion interpretation. Patient management and/or disease stage would have been altered in 42 of 283 cases (15%) based on report differences as determined by the 2 neuro-oncologists and the surgeon participating in the study. Sufficient follow-up was available in 35 of 42 cases (83%). The second-opinion interpretation was correct 100% of the time (35/35). CONCLUSION: Second-opinion interpretations of neuroimaging studies by subspecialized oncologic neuroradiologists provide added value by reducing error and optimizing the care of cancer patients. Cancer 2016. © 2016 American Cancer Society. Cancer 2016;122:2708-2714. © 2016 American Cancer Society.
Asunto(s)
Errores Diagnósticos/prevención & control , Interpretación de Imagen Asistida por Computador/normas , Neoplasias/diagnóstico por imagen , Neuroimagen/normas , Atención al Paciente/normas , Derivación y Consulta , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias/patología , Neoplasias/terapia , Variaciones Dependientes del Observador , Médicos , Pronóstico , Radiólogos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X , Adulto JovenRESUMEN
BACKGROUND AND PURPOSE: Low-grade and anaplastic oligodendrogliomas are often difficult to differentiate on the basis of conventional MR imaging characteristics. Dynamic contrast-enhanced (DCE) MRI can assess tumor microvasculature and has demonstrated utility for predicting glioma grade and prognosis in primary brain tumors. The aim of our study was to evaluate the performance of plasma volume (Vp) and volume transfer coefficient (K(trans) ) derived from DCE MRI in differentiating between grade II and grade III oligodendrogliomas. MATERIALS AND METHODS: Twenty-four consecutive patients with pathologically confirmed oligodendroglioma (World Health Organization grade II, n = 14 and grade III, n = 10) were retrospectively assessed. Pretreatment DCE MRI was performed and regions of interest were manually drawn around the entire tumor volume to calculate Vp and K(trans) . The Mann-Whitney U test and receiver operating characteristic (ROC) analysis were performed to compare pharmacokinetic parameters between the 2 groups. RESULTS: The Vpmean values for grade III oligodendrogliomas were significantly higher (P = .03) than those for grade II oligodendrogliomas. The K(trans) mean values were higher in grade III lesions, but the difference between the 2 groups was not statistically significant (P > .05). Based on ROC analysis, the Vpmean (area under curve = .757, SD = .1) cut-off value that provided the best combination of high sensitivity and specificity to distinguish between grade II and III oligodendrogliomas was 2.35 (P < .03). CONCLUSION: The results of our study suggest the DCE MRI parameter Vpmean can noninvasively differentiate between grade II and grade III oligodendrogliomas.