Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Restor Ecol ; 26(6): 1066-1074, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31019361

RESUMEN

The restoration of eelgrass (Zostera marina L.) is a high priority in Puget Sound, Washington, United States. In 2011, the state set a restoration target to increase eelgrass area by 4,200 ha by 2020, a 20% increase over the 21,500 ha then present. In a region as large, dynamic and complex as Puget Sound, locating areas to restore eelgrass effectively and efficiently is challenging. To identify potential restoration sites we used simulation modeling, a geodatabase for spatial screening, and test planting. The simulation model of eelgrass biomass used time series of water properties (depth, temperature, and salinity) output from a regional hydrodynamic model and empirical water clarity data to indicate growth potential. The GIS-based analysis incorporated results from the simulation model, historical and current eelgrass area, substrate, stressors, and shoreline manager input into a geodatabase to screen sites for field reconnaissance. Finally, we planted eelgrass at test sites and monitored survival. We screened 2,630 sites and identified 6,292 ha of highly to very highly suitable conditions for eelgrass-ample area for meeting the 20% target. Test plantings indicated fine-scale data needs to improve predictive capability. We summarized the results of our analysis for the majority of the ~3,220 km of shoreline in Puget Sound on maps to support restoration site selection and planning. Our approach provides a process for identifying and testing potential restoration sites and highlights information needs and management actions to reduce stressors and increase eelgrass area to meet restoration objectives.

2.
Environ Manage ; 53(1): 147-62, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24100942

RESUMEN

Healthy seagrass is considered a prime indicator of estuarine ecosystem function. On the Pacific coast of North America, at least two congeners of Zostera occur: native Zostera marina, and introduced, Zostera japonica. Z. japonica is considered "invasive" and therefore, ecologically and economically harmful by some, while others consider it benign or perhaps beneficial. Z. japonica does not appear on the Federal or the Oregon invasive species or noxious weed lists. However, the State of California lists it as both an invasive and noxious weed; Washington State recently listed it as a noxious weed. We describe the management dynamics in North America with respect to these congener species and highlight the science and policies behind these decisions. In recent years, management strategies at the state level have ranged from historical protection of Z. japonica as a priority habitat in Washington to eradication in California. Oregon and British Columbia, Canada appear to have no specific policies with regard to Z. japonica. This fractured management approach contradicts efforts to conserve and protect seagrass in other regions of the US and around the world. Science must play a critical role in the assessment of Z. japonica ecology and the immediate and long-term effects of management actions. The information and recommendations provided here can serve as a basis for providing scientific data in order to develop better informed management decisions and aid in defining a uniform management strategy for Z. japonica.


Asunto(s)
Especies Introducidas , Zosteraceae/fisiología , Conservación de los Recursos Naturales , Ecosistema , América del Norte , Dispersión de las Plantas , Movimientos del Agua
3.
Nat Commun ; 11(1): 3668, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32699271

RESUMEN

Restoration is becoming a vital tool to counteract coastal ecosystem degradation. Modifying transplant designs of habitat-forming organisms from dispersed to clumped can amplify coastal restoration yields as it generates self-facilitation from emergent traits, i.e. traits not expressed by individuals or small clones, but that emerge in clumped individuals or large clones. Here, we advance restoration science by mimicking key emergent traits that locally suppress physical stress using biodegradable establishment structures. Experiments across (sub)tropical and temperate seagrass and salt marsh systems demonstrate greatly enhanced yields when individuals are transplanted within structures mimicking emergent traits that suppress waves or sediment mobility. Specifically, belowground mimics of dense root mats most facilitate seagrasses via sediment stabilization, while mimics of aboveground plant structures most facilitate marsh grasses by reducing stem movement. Mimicking key emergent traits may allow upscaling of restoration in many ecosystems that depend on self-facilitation for persistence, by constraining biological material requirements and implementation costs.


Asunto(s)
Adaptación Fisiológica , Restauración y Remediación Ambiental/métodos , Hydrocharitaceae/fisiología , Humedales , Zosteraceae/fisiología , Plásticos Biodegradables , Biomimética/métodos , Ecología/métodos , Restauración y Remediación Ambiental/instrumentación , Florida , Países Bajos , Agua de Mar , Suecia , Clima Tropical , Indias Occidentales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA