RESUMEN
Acoutofluidics is an increasingly developing and maturing technical discipline. With the advantages of being label-free, non-contact, bio-friendly, high-resolution, and remote-controllable, it is very suitable for the operation of living cells. After decades of fundamental laboratory research, its technical principles have become increasingly clear, and its manufacturing technology has gradually become popularized. Presently, various imaginative applications continue to emerge and are constantly being improved. Here, we introduce the development of acoustofluidic actuation technology from the perspective of related manipulation applications on living cells. Among them, we focus on the main development directions such as acoustofluidic sorting, acoustofluidic tissue engineering, acoustofluidic microscopy, and acoustofluidic biophysical therapy. This review aims to provide a concise summary of the current state of research and bridge past developments with future directions, offering researchers a comprehensive overview and sparking innovation in the field.
RESUMEN
Sperm rheotaxis, the phenomenon where sperm cells swim against the direction of fluid flow, is one of the major guiding mechanisms for long-distance sperm migration within the female reproductive tract. However, current approaches to study this pose challenges in dealing with rare samples by continuously introducing extra buffer. Here, we developed a device utilising acoustic streaming, the steady flow driven by an acoustic perturbation, to drive a tuneable, well-regulated continuous flow with velocities ranging from 40 µm s-1 to 128 µm s-1 (corresponding to maximum shear rates of 5.6 s-1 to 24.1 s-1) in channels of interest - a range suitable for probing sperm rheotaxis behaviour. Using this device, we studied sperm rheotaxis in microchannels of distinct geometries representing the geometrical characteristics of the inner-surfaces of fallopian tubes, identified sperm dynamics with the presence of flow in channels of various widths. We found a 28% higher lateral head displacement (ALH) in sufficiently motile rheotactic sperm in a 50 µm channel in the presence of acoustically-generated flow as well as a change in migration direction and a 52% increase in curvilinear velocity (VCL) of sufficiently motile sperm in a 225 µm channel by increasing the average flow velocity from 40 µm s-1 to 130 µm s-1. These results provided insights for understanding sperm navigation strategy in the female reproductive tract, where rheotactic sperm swim near the boundaries to overcome the flow in the female reproductive tract and reach the fertilization site. This surface acoustic wave device presents a simple, pumpless alternative for studying microswimmers within in vitro models, enabling the discovery of new insights into microswimmers' migration strategies, while potentially offering opportunities for rheotaxis-based sperm selection and other flow-essential applications.
Asunto(s)
Semen , Motilidad Espermática , Masculino , Femenino , Humanos , Espermatozoides , SonidoRESUMEN
Sperm motility is a significant predictor of male fertility potential and is directly linked to fertilization success in both natural and some forms of assisted reproduction. Sperm motility can be impaired by both genetic and environmental factors, with asthenozoospermia being a common clinical presentation. Moreover, in the setting of assisted reproductive technology clinics, there is a distinct absence of effective and noninvasive technology to increase sperm motility without detriment to the sperm cells. Here, a new method is presented to boost sperm motility by increasing the intracellular rate of metabolic activity using high frequency ultrasound. An increase of 34% in curvilinear velocity (VCL), 10% in linearity, and 32% in the number of motile sperm cells is shown by rendering immotile sperm motile, after just 20 s exposure. A similar effect with an increase of 15% in VCL treating human sperm with the same setting is also identified. This cell level mechanotherapy approach causes no significant change in cell viability or DNA fragmentation index, and, as such, has the potential to be applied to encourage natural fertilization or less invasive treatment choices such as in vitro fertilization rather than intracytoplasmic injection.
Asunto(s)
Astenozoospermia , Infertilidad Masculina , Animales , Bovinos , Fertilización In Vitro , Humanos , Infertilidad Masculina/terapia , Masculino , Motilidad Espermática , EspermatozoidesRESUMEN
Male infertility is a global reproductive issue, several clinical approaches have been developed to tackle it, but their effectiveness is limited by the labour-intensive and time-consuming sperm selection procedures used. Here, we present an automated, acoustic based continuous-flow method capable of selecting high quality sperm with considerably improved motility and DNA integrity compared to the initial raw bull semen. The acoustic field translates larger sperm and guides highly motile sperm across the channel width. The result is the selection of sperm with over 50% and 60% improvement in vitality and progressive motility and more than 38% improvement in DNA integrity, respectively, while providing a clinically relevant volume and selected sperm number for the performance of in vitro fertilisation (IVF) and intracytoplasmic sperm injection (ICSI) by selecting over 60 000 sperm in under an hour.