Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(10)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37240066

RESUMEN

The developing entorhinal-hippocampal system is embedded within a large-scale bottom-up network, where spontaneous myoclonic movements, presumably via somatosensory feedback, trigger hippocampal early sharp waves (eSPWs). The hypothesis, that somatosensory feedback links myoclonic movements with eSPWs, implies that direct somatosensory stimulation should also be capable of evoking eSPWs. In this study, we examined hippocampal responses to electrical stimulation of the somatosensory periphery in urethane-anesthetized, immobilized neonatal rat pups using silicone probe recordings. We found that somatosensory stimulation in ~33% of the trials evoked local field potential (LFP) and multiple unit activity (MUA) responses identical to spontaneous eSPWs. The somatosensory-evoked eSPWs were delayed from the stimulus, on average, by 188 ms. Both spontaneous and somatosensory-evoked eSPWs (i) had similar amplitude of ~0.5 mV and half-duration of ~40 ms, (ii) had similar current-source density (CSD) profiles, with current sinks in CA1 strata radiatum, lacunosum-moleculare and DG molecular layer and (iii) were associated with MUA increase in CA1 and DG. Our results indicate that eSPWs can be triggered by direct somatosensory stimulations and support the hypothesis that sensory feedback from movements is involved in the association of eSPWs with myoclonic movements in neonatal rats.


Asunto(s)
Hipocampo , Uretano , Ratas , Animales , Animales Recién Nacidos , Hipocampo/fisiología , Estimulación Eléctrica
2.
Front Cell Neurosci ; 17: 1106268, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970422

RESUMEN

Anoxic spreading depolarization (aSD) is a hallmark of ischemic injury in the cerebral cortex. In adults, aSD is associated with rapid and nearly complete neuronal depolarization and loss of neuronal functions. While ischemia also evokes aSD in the immature cortex, developmental aspects of neuronal behavior during aSD remain largely unknown. Here, using oxygen-glucose deprivation (OGD) ischemia model in slices of the postnatal rat somatosensory cortex, we found that immature neurons displayed much more complex behaviors: they initially moderately depolarized during aSD, then transiently repolarised (for up to tens of minutes), and only then passed to terminal depolarization. The ability to fire action potentials was maintained in neurons mildly depolarized during aSD without reaching the level of depolarization block, and these functions were regained in the majority of immature neurons during post-aSD transient repolarization. The amplitude of depolarization and the probability of depolarization block during aSD increased, whereas transient post-SD repolarization levels and duration, and associated recovery in neuronal firing decreased with age. By the end of the first postnatal month, aSD acquired an adult-like phenotype, where depolarization during aSD merged with terminal depolarization and the phase of transient recovery was lost. Thus, changes in neuronal function during aSD undergo remarkable developmental changes that may contribute to lower susceptibility of the immature neurons to ischemia.

3.
Phys Rev Lett ; 108(16): 161602, 2012 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-22680707

RESUMEN

Nontrivial critical models in 2D with a central charge c=0 are described by logarithmic conformal field theories (LCFTs), and exhibit, in particular, mixing of the stress-energy tensor with a "logarithmic" partner under a conformal transformation. This mixing is quantified by a parameter (usually denoted b), introduced in Gurarie [Nucl. Phys. B546, 765 (1999)]. The value of b has been determined over the last few years for the boundary versions of these models: b(perco)=-5/8 for percolation and b(poly)=5/6 for dilute polymers. Meanwhile, the existence and value of b for the bulk theory has remained an open problem. Using lattice regularization techniques we provide here an "experimental study" of this question. We show that, while the chiral stress tensor has indeed a single logarithmic partner in the chiral sector of the theory, the value of b is not the expected one; instead, b=-5 for both theories. We suggest a theoretical explanation of this result using operator product expansions and Coulomb gas arguments, and discuss the physical consequences on correlation functions. Our results imply that the relation between bulk LCFTs of physical interest and their boundary counterparts is considerably more involved than in the nonlogarithmic case.

4.
Sci Rep ; 10(1): 18970, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33149164

RESUMEN

Anoxic spreading depolarization (aSD) has been hypothesized as a terminal event during oxygen-glucose deprivation (OGD) in submerged cortical slices in vitro. However, mechanical artifacts caused by aSD-triggered edema may introduce error in the assessment of neuronal viability. Here, using continuous patch-clamp recordings from submerged rat cortical slices, we first confirmed that vast majority of L4 neurons permanently lost their membrane potential during OGD-induced aSD. In some recordings, spontaneous transition from whole-cell to out-side out configuration occurred during or after aSD, and only a small fraction of neurons survived aSD with reperfusion started shortly after aSD. Secondly, to minimize artifacts caused by OGD-induced edema, cells were short-term patched following OGD episodes of various duration. Nearly half of L4 cells maintained membrane potential and showed the ability to spike-fire if reperfusion started less than 10 min after aSD. The probability of finding live neurons progressively decreased at longer reperfusion delays at a rate of about 2% per minute. We also found that neurons in L2/3 show nearly threefold higher resistance to OGD than neurons in L4. Our results suggest that in the OGD ischemia model, aSD is not a terminal event, and that the "commitment point" of irreversible damage occurs at variable delays, in the range of tens of minutes, after OGD-induced aSD in submerged cortical slices.


Asunto(s)
Encéfalo/fisiopatología , Hipoxia Encefálica/fisiopatología , Neuronas/citología , Animales , Encéfalo/efectos de los fármacos , Hipoxia de la Célula , Supervivencia Celular/efectos de los fármacos , Femenino , Glucosa/deficiencia , Masculino , Potenciales de la Membrana/efectos de los fármacos , Modelos Biológicos , Neuronas/efectos de los fármacos , Oxígeno/farmacología , Técnicas de Placa-Clamp , Ratas
5.
Front Cell Neurosci ; 12: 502, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30618644

RESUMEN

Cerebral edema is a major, life threatening complication of ischemic brain damage. Previous studies using brain slices have revealed that cellular swelling and a concomitant increase in tissue transparency starts within minutes of the onset of metabolic insult in association with collective anoxic spreading depolarization (aSD). However, the dynamics of tissue swelling in brain slices under ischemia-like conditions remain elusive. Here, we explored the dynamics of brain tissue swelling induced by oxygen-glucose deprivation (OGD) in submerged rat barrel cortex slices. Video monitoring of the vertical and horizontal position of fluorescent dye-filled neurons and contrast slice surface imaging revealed elevation of the slice surface and a horizontal displacement of the cortical tissue during OGD. The OGD-induced tissue movement was also associated with an expansion of the slice borders. Tissue swelling started several minutes after aSD and continued during reperfusion with normal solution. Thirty minutes after aSD, slice borders had expanded by ~130 µm and the slice surface had moved up to attain a height of ~70 µm above control levels, which corresponded to a volume increase of ~30%. Hyperosmotic sucrose solution partially reduced the OGD-induced slice swelling. Thus, OGD-induced cortical slice tissue swelling in brain slices in vitro recapitulates many features of ischemic cerebral edema in vivo, its onset is tightly linked to aSD and it develops at a relatively slow pace after aSD. We propose that this model of cerebral edema in vitro could be useful for the exploration of the pathophysiological mechanisms underlying ischemic cerebral edema and in the search for an efficient treatment to this devastating condition.

6.
Front Cell Neurosci ; 11: 390, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29326550

RESUMEN

Anoxic depolarization (AD) is a hallmark of ischemic brain damage. AD is associated with a spreading wave of neuronal depolarization and an increase in light transmittance. However, initiation and spread of AD across the layers of the somatosensory cortex, which is one of the most frequently affected brain regions in ischemic stroke, remains largely unknown. Here, we explored the initiation and propagation of AD in slices of the rat barrel cortex using extracellular local field potential (LFP) recordings and optical intrinsic signal (OIS) recordings. We found that ischemia-like conditions induced by oxygen-glucose deprivation (OGD) evoked AD, which manifested as a large negative LFP shift and an increase in light transmittance. AD typically initiated in one or more barrels and further spread across the entire slice with a preferential propagation through L4. Elevated extracellular potassium concentration accelerated the AD onset without affecting proneness of L4 to AD. In live slices, barrels were most heavily labeled by the metabolic level marker 2,3,5-triphenyltetrazolium chloride, suggesting that the highest metabolic demand is in L4 when compared to the other layers. Thus, L4 is the layer of the barrel cortex most prone to AD, which may be due to the highest metabolic demand and cell density in this layer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA