Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
2.
Molecules ; 29(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998988

RESUMEN

Naturally occurring homoisoflavonoids isolated from some Liliaceae plants have been reported to have diverse biological activities (e.g., antioxidant, anti-inflammatory, and anti-angiogenic effects). The exact mechanism by which homoisoflavonones exert anti-neuroinflammatory effects against activated microglia-induced inflammatory cascades has not been well studied. Here, we aimed to explore the mechanism of homoisoflavonoid SH66 having a potential anti-inflammatory effect in lipopolysaccharide (LPS)-primed BV2 murine microglial cells. Microglia cells were pre-treated with SH66 followed by LPS (100 ng/mL) activation. SH66 treatment attenuated the production of inflammatory mediators, including nitric oxide and proinflammatory cytokines, by down-regulating mitogen-activated protein kinase signaling in LPS-activated microglia. The SH66-mediated inhibition of the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome complex and the respective inflammatory biomarker-like active interleukin (IL)-1ß were noted to be one of the key pathways of the anti-inflammatory effect. In addition, SH66 increased the neurite length in the N2a neuronal cell and the level of nerve growth factor in the C6 astrocyte cell. Our results demonstrated the anti-neuroinflammatory effect of SH66 against LPS-activated microglia-mediated inflammatory events by down-regulating the NLRP3 inflammasome complex, with respect to its neuroprotective effect. SH66 could be an interesting candidate for further research and development regarding prophylactics and therapeutics for inflammation-mediated neurological complications.


Asunto(s)
Antiinflamatorios , Lipopolisacáridos , Microglía , Microglía/efectos de los fármacos , Microglía/metabolismo , Lipopolisacáridos/farmacología , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/química , Línea Celular , Isoflavonas/farmacología , Isoflavonas/química , Citocinas/metabolismo , Óxido Nítrico/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo
3.
Cell Mol Neurobiol ; 42(8): 2505-2525, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34460037

RESUMEN

Microglial activation is considered as the critical pathogenic event in diverse central nervous system disorders including cerebral ischemia. Proinflammatory responses of activated microglia have been well reported in the ischemic brain and neuroinflammatory responses of activated microglia have been believed to be the potential therapeutic strategy. However, despite having proinflammatory roles, microglia can have significant anti-inflammatory roles and they are associated with the production of growth factors which are responsible for neuroprotection and recovery after ischemic injury. Microglia can directly promote neuroprotection by preventing ischemic infarct expansion and promoting functional outcomes. Indirectly, microglia are involved in promoting anti-inflammatory responses, neurogenesis, and angiogenesis in the ischemic brain which are crucial pathophysiological events for ischemic recovery. In fact, anti-inflammatory cytokines and growth factors produced by microglia can promote neuroprotection and attenuate neurobehavioral deficits. In addition, microglia regulate phagocytosis, axonal regeneration, blood-brain barrier protection, white matter integrity, and synaptic remodeling, which are essential for ischemic recovery. Microglia can also regulate crosstalk with neurons and other cell types to promote neuroprotection and ischemic recovery. This review mainly focuses on the roles of microglia in neuroprotection and recovery following ischemic injury. Furthermore, this review also sheds the light on the therapeutic potential of microglia in stroke patients.


Asunto(s)
Isquemia Encefálica , Microglía , Antiinflamatorios/farmacología , Isquemia Encefálica/metabolismo , Citocinas/metabolismo , Humanos , Microglía/metabolismo , Neuroprotección
4.
Pharmacol Res ; 169: 105661, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33971269

RESUMEN

Tanshinones, lipophilic diterpenes isolated from the rhizome of Salvia miltiorrhiza, have diverse pharmacological activities against human ailments including neurological diseases. In fact, tanshinones have been used to treat heart diseases, stroke, and vascular diseases in traditional Chinese medicine. During the last decade, tanshinones have been the most widely studied phytochemicals for their neuroprotective effects against experimental models of cerebral ischemia and Alzheimer's diseases. Importantly, tanshinone IIA, mostly studied tanshinone for biological activities, is recently reported to attenuate blood-brain barrier permeability among stroke patients, suggesting tanshinone IIA as an appealing therapeutic candidate for neurological diseases. Tanshinone I and IIA are also effective in experimental models of Parkinson's disease, Multiple sclerosis, and other neuroinflammatory diseases. In addition, several experimental studies suggested the pleiotropic neuroprotective effects of tanshinones such as anti-inflammatory, antioxidant, anti-apoptotic, and BBB protectant further value aiding to tanshinone as an appealing therapeutic strategy in neurological diseases. Therefore, in this review, we aimed to compile the recent updates and cellular and molecular mechanisms of neuroprotection of tanshinone IIA in diverse neurological diseases.


Asunto(s)
Abietanos/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Isquemia Encefálica/tratamiento farmacológico , Humanos , Esclerosis Múltiple/tratamiento farmacológico , Enfermedad de Parkinson/tratamiento farmacológico
5.
Pharmacol Res ; 165: 105419, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33450385

RESUMEN

The search for novel therapeutic agents for the management of cerebral ischemia/stroke has become an appealing research interest in the recent past. Neuroprotective phytochemicals as novel stroke drug candidates have recently drawn significant interests from stroke scientists due to their strong brain protective effects in animal stroke models. The underlying mechanism of action is likely owing to their anti-inflammatory properties, even though other mechanisms such as anti-oxidation and vasculoprotection have also been proposed. It is generally held that the early proinflammatory responses after stroke can lead to a secondary brain injury, mainly due to the damaging effect exerted by over-activation of brain resident microglial cells and infiltration of circulating monocytes and macrophages. This review focuses on the anti-inflammatory properties of bioactive phytochemicals, including activation and polarization of microglia/macrophages in the post-ischemic brain. The latest studies in animal stroke models demonstrate that this group of bioactive phytochemicals exerts their anti-inflammatory effects via attenuation of brain proinflammatory microglia and macrophages M1 polarization while promoting anti-inflammatory microglial and macrophages M2 polarization. As a result, stroked animals treated with brain protective phytochemicals have significantly fewer brain active M1 microglia and macrophages, smaller brain infarct volume, better functional recovery, and better survival rate. Therefore, this review provides insights into a new category of drug candidates for stroke drug development by employing neuroprotective phytochemicals.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Microglía/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Fitoquímicos/uso terapéutico , Animales , Humanos , Enfermedades Neuroinflamatorias/tratamiento farmacológico
6.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34360625

RESUMEN

Activation of microglia and/or astrocytes often releases proinflammatory molecules as critical pathogenic mediators that can promote neuroinflammation and secondary brain damages in diverse diseases of the central nervous system (CNS). Therefore, controlling the activation of glial cells and their neuroinflammatory responses has been considered as a potential therapeutic strategy for treating neuroinflammatory diseases. Recently, receptor-mediated lysophospholipid signaling, sphingosine 1-phosphate (S1P) receptor- and lysophosphatidic acid (LPA) receptor-mediated signaling in particular, has drawn scientific interest because of its critical roles in pathogenies of diverse neurological diseases such as neuropathic pain, systemic sclerosis, spinal cord injury, multiple sclerosis, cerebral ischemia, traumatic brain injury, hypoxia, hydrocephalus, and neuropsychiatric disorders. Activation of microglia and/or astrocytes is a common pathogenic event shared by most of these CNS disorders, indicating that lysophospholipid receptors could influence glial activation. In fact, many studies have reported that several S1P and LPA receptors can influence glial activation during the pathogenesis of cerebral ischemia and multiple sclerosis. This review aims to provide a comprehensive framework about the roles of S1P and LPA receptors in the activation of microglia and/or astrocytes and their neuroinflammatory responses in CNS diseases.


Asunto(s)
Astrocitos/metabolismo , Enfermedades del Sistema Nervioso Central/metabolismo , Neuroglía/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Animales , Humanos
7.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946349

RESUMEN

Nitric oxide (NO) is a neurotransmitter that mediates the activation and inhibition of inflammatory cascades. Even though physiological NO is required for defense against various pathogens, excessive NO can trigger inflammatory signaling and cell death through reactive nitrogen species-induced oxidative stress. Excessive NO production by activated microglial cells is specifically associated with neuroinflammatory and neurodegenerative conditions, such as Alzheimer's and Parkinson's disease, amyotrophic lateral sclerosis, ischemia, hypoxia, multiple sclerosis, and other afflictions of the central nervous system (CNS). Therefore, controlling excessive NO production is a desirable therapeutic strategy for managing various neuroinflammatory disorders. Recently, phytochemicals have attracted considerable attention because of their potential to counteract excessive NO production in CNS disorders. Moreover, phytochemicals and nutraceuticals are typically safe and effective. In this review, we discuss the mechanisms of NO production and its involvement in various neurological disorders, and we revisit a number of recently identified phytochemicals which may act as NO inhibitors. This review may help identify novel potent anti-inflammatory agents that can downregulate NO, specifically during neuroinflammation and neurodegeneration.


Asunto(s)
Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Óxido Nítrico/metabolismo , Fitoquímicos/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Descubrimiento de Drogas , Humanos , Inflamación/metabolismo , Terapia Molecular Dirigida , Enfermedades Neurodegenerativas/metabolismo , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/uso terapéutico , Óxido Nítrico/antagonistas & inhibidores , Estrés Oxidativo/efectos de los fármacos , Fitoquímicos/química , Fitoquímicos/uso terapéutico , Especies de Nitrógeno Reactivo/metabolismo
8.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669456

RESUMEN

The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2/COVID-19), is a worldwide pandemic, as declared by the World Health Organization (WHO). It is a respiratory virus that infects people of all ages. Although it may present with mild to no symptoms in most patients, those who are older, immunocompromised, or with multiple comorbidities may present with severe and life-threatening infections. Throughout history, nutraceuticals, such as a variety of phytochemicals from medicinal plants and dietary supplements, have been used as adjunct therapies for many disease conditions, including viral infections. Appropriate use of these adjunct therapies with antiviral proprieties may be beneficial in the treatment and/or prophylaxis of COVID-19. In this review, we provide a comprehensive summary of nutraceuticals, such as vitamins C, D, E, zinc, melatonin, and other phytochemicals and function foods. These nutraceuticals may have potential therapeutic efficacies in fighting the threat of the SARS-CoV-2/COVID-19 pandemic.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Suplementos Dietéticos , Melatonina/uso terapéutico , Vitaminas/uso terapéutico , Zinc/uso terapéutico , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Ácido Ascórbico/farmacología , Ácido Ascórbico/uso terapéutico , Suplementos Dietéticos/análisis , Alimentos Funcionales/análisis , Humanos , Melatonina/farmacología , SARS-CoV-2/efectos de los fármacos , Vitamina D/farmacología , Vitamina D/uso terapéutico , Vitamina E/farmacología , Vitamina E/uso terapéutico , Vitaminas/farmacología , Zinc/farmacología
9.
Int J Mol Sci ; 21(22)2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33202644

RESUMEN

Lysophosphatidic acid receptor 1 (LPA1) contributes to brain injury following transient focal cerebral ischemia. However, the mechanism remains unclear. Here, we investigated whether nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation might be an underlying mechanism involved in the pathogenesis of brain injury associated with LPA1 following ischemic challenge with transient middle cerebral artery occlusion (tMCAO). Suppressing LPA1 activity by its antagonist attenuated NLRP3 upregulation in the penumbra and ischemic core regions, particularly in ionized calcium-binding adapter molecule 1 (Iba1)-expressing cells like macrophages of mouse after tMCAO challenge. It also suppressed NLRP3 inflammasome activation, such as caspase-1 activation, interleukin 1ß (IL-1ß) maturation, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) speck formation, in a post-ischemic brain. The role of LPA1 in NLRP3 inflammasome activation was confirmed in vitro using lipopolysaccharide-primed bone marrow-derived macrophages, followed by LPA exposure. Suppressing LPA1 activity by either pharmacological antagonism or genetic knockdown attenuated NLRP3 upregulation, caspase-1 activation, IL-1ß maturation, and IL-1ß secretion in these cells. Furthermore, nuclear factor-κB (NF-κB), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 were found to be LPA1-dependent effector pathways in these cells. Collectively, results of the current study first demonstrate that LPA1 could contribute to ischemic brain injury by activating NLRP3 inflammasome with underlying effector mechanisms.


Asunto(s)
Lesiones Encefálicas/metabolismo , Ataque Isquémico Transitorio/metabolismo , Lisofosfolípidos/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Animales , Lesiones Encefálicas/etiología , Lesiones Encefálicas/patología , Caspasa 1/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Interleucina-1beta/metabolismo , Ataque Isquémico Transitorio/complicaciones , Ataque Isquémico Transitorio/patología , Masculino , Ratones , Ratones Endogámicos ICR
10.
Int J Mol Sci ; 21(3)2020 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-31991572

RESUMEN

Tumor necrosis factor-alpha (TNF-α) is a well-known pro-inflammatory cytokine responsible for the modulation of the immune system. TNF-α plays a critical role in almost every type of inflammatory disorder, including central nervous system (CNS) diseases. Although TNF-α is a well-studied component of inflammatory responses, its functioning in diverse cell types is still unclear. TNF-α functions through its two main receptors: tumor necrosis factor receptor 1 and 2 (TNFR1, TNFR2), also known as p55 and p75, respectively. Normally, the functions of soluble TNF-α-induced TNFR1 activation are reported to be pro-inflammatory and apoptotic. While TNF-α mediated TNFR2 activation has a dual role. Several synthetic drugs used as inhibitors of TNF-α for diverse inflammatory diseases possess serious adverse effects, which make patients and researchers turn their focus toward natural medicines, phytochemicals in particular. Phytochemicals targeting TNF-α can significantly improve disease conditions involving TNF-α with fewer side effects. Here, we reviewed known TNF-α inhibitors, as well as lately studied phytochemicals, with a role in inhibiting TNF-α itself, and TNF-α-mediated signaling in inflammatory diseases focusing mainly on CNS disorders.


Asunto(s)
Enfermedades Neurodegenerativas/tratamiento farmacológico , Fitoquímicos/uso terapéutico , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa , Animales , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo
11.
J Neuroinflammation ; 16(1): 170, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31429777

RESUMEN

BACKGROUND: Lysophosphatidic acid receptor 1 (LPA1) is in the spotlight because its synthetic antagonist has been under clinical trials for lung fibrosis and psoriasis. Targeting LPA1 might also be a therapeutic strategy for cerebral ischemia because LPA1 triggers microglial activation, a core pathogenesis in cerebral ischemia. Here, we addressed this possibility using a mouse model of transient middle cerebral artery occlusion (tMCAO). METHODS: To address the role of LPA1 in the ischemic brain damage, we used AM095, a selective LPA1 antagonist, as a pharmacological tool and lentivirus bearing a specific LPA1 shRNA as a genetic tool. Brain injury after tMCAO challenge was accessed by determining brain infarction and neurological deficit score. Role of LPA1 in tMCAO-induced microglial activation was ascertained by immunohistochemical analysis. Proinflammatory responses in the ischemic brain were determined by qRT-PCR and immunohistochemical analyses, which were validated in vitro using mouse primary microglia. Activation of MAPKs and PI3K/Akt was determined by Western blot analysis. RESULTS: AM095 administration immediately after reperfusion attenuated brain damage such as brain infarction and neurological deficit at 1 day after tMCAO, which was reaffirmed by LPA1 shRNA lentivirus. AM095 administration also attenuated brain infarction and neurological deficit at 3 days after tMCAO. LPA1 antagonism attenuated microglial activation; it reduced numbers and soma size of activated microglia, reversed their morphology into less toxic one, and reduced microglial proliferation. Additionally, LPA1 antagonism reduced mRNA expression levels of proinflammatory cytokines and suppressed NF-κB activation, demonstrating its regulatory role of proinflammatory responses in the ischemic brain. Particularly, these LPA1-driven proinflammatory responses appeared to occur in activated microglia because NF-κB activation occurred mainly in activated microglia in the ischemic brain. Regulatory role of LPA1 in proinflammatory responses of microglia was further supported by in vitro findings using lipopolysaccharide-stimulated cultured microglia, showing that suppressing LPA1 activity reduced mRNA expression levels of proinflammatory cytokines. In the ischemic brain, LPA1 influenced PI3K/Akt and MAPKs; suppressing LPA1 activity decreased MAPK activation and increased Akt phosphorylation. CONCLUSION: This study demonstrates that LPA1 is a new etiological factor for cerebral ischemia, strongly indicating that its modulation can be a potential strategy to reduce ischemic brain damage.


Asunto(s)
Lesiones Encefálicas/metabolismo , Ataque Isquémico Transitorio/metabolismo , Microglía/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Animales , Lesiones Encefálicas/patología , Ataque Isquémico Transitorio/patología , Masculino , Ratones , Ratones Endogámicos ICR , Microglía/patología
12.
J Neuroinflammation ; 15(1): 284, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305119

RESUMEN

BACKGROUND: The pathogenic roles of receptor-mediated sphingosine 1-phosphate (S1P) signaling in cerebral ischemia have been evidenced mainly through the efficacy of FTY720 that binds non-selectively to four of the five S1P receptors (S1P1,3,4,5). Recently, S1P1 and S1P2 were identified as specific receptor subtypes that contribute to brain injury in cerebral ischemia; however, the possible involvement of other S1P receptors remains unknown. S1P3 can be the candidate because of its upregulation in the ischemic brain, which was addressed in this study, along with underlying pathogenic mechanisms. METHODS: We used transient middle cerebral artery occlusion/reperfusion (tMCAO), a mouse model of transient focal cerebral ischemia. To identify S1P3 as a pathogenic factor in cerebral ischemia, we employed a specific S1P3 antagonist, CAY10444. Brain damages were assessed by brain infarction, neurological score, and neurodegeneration. Histological assessment was carried out to determine microglial activation, morphological transformation, and proliferation. M1/M2 polarization and relevant signaling pathways were determined by biochemical and immunohistochemical analysis. RESULTS: Inhibiting S1P3 immediately after reperfusion with CAY10444 significantly reduced tMCAO-induced brain infarction, neurological deficit, and neurodegeneration. When S1P3 activity was inhibited, the number of activated microglia was markedly decreased in both the periischemic and ischemic core regions in the ischemic brain 1 and 3 days following tMCAO. Moreover, inhibiting S1P3 significantly restored the microglial shape from amoeboid to ramified microglia in the ischemic core region 3 days after tMCAO, and it attenuated microglial proliferation in the ischemic brain. In addition to these changes, S1P3 signaling influenced the proinflammatory M1 polarization, but not M2. The S1P3-dependent regulation of M1 polarization was clearly shown in activated microglia, which was affirmed by determining the in vivo activation of microglial NF-κB signaling that is responsible for M1 and in vitro expression levels of proinflammatory cytokines in activated microglia. As downstream effector pathways in an ischemic brain, S1P3 influenced phosphorylation of ERK1/2, p38 MAPK, and Akt. CONCLUSIONS: This study identified S1P3 as a pathogenic mediator in an ischemic brain along with underlying mechanisms, involving its modulation of microglial activation and M1 polarization, further suggesting that S1P3 can be a therapeutic target for cerebral ischemia.


Asunto(s)
Lesiones Encefálicas/etiología , Lesiones Encefálicas/patología , Polaridad Celular/fisiología , Infarto de la Arteria Cerebral Media/complicaciones , Microglía/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Animales , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Polaridad Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Fluoresceínas/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Lipopolisacáridos/farmacología , Activación de Macrófagos , Masculino , Ratones , Ratones Endogámicos ICR , Proteínas de Microfilamentos/metabolismo , FN-kappa B/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Lisoesfingolípidos/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Receptores de Esfingosina-1-Fosfato , Tiazolidinas/uso terapéutico
13.
J Tradit Chin Med ; 34(1): 69-75, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25102694

RESUMEN

OBJECTIVE: To investigate the neuroprotective effects of Fructus Chebulae extract using both in vivo and in vitro models of cerebral ischemia. METHODS: As an in vitro model, oxygen glucose deprivation followed by reoxygenation (OGD-R) and hydrogen peroxide (H2O2) induced cellular damage in rat pheochromocytoma (PC12) cells was used to investigate the neuroprotective effects of extract of Fructus Chebulae. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to calculate cell survival. For in vivo, occlusion of left middle cerebral artery on rats was carried out as a focal cerebral ischemic model. RESULTS: Fructus Chebulae extract increases the PC12 cell survival against OGD-R and H2O2 by 68% and 91.4% respectively. Fructus Chebulae also decreases the cerebral infarct volume by 39% and extent of hemisphere swelling from 17% in control group to 10% in Fructus Chebulae treated group. CONCLUSION: Fructus Chebulae, as a traditional medicine, can rescue the neuronal cell death against ischemia related damage. The possible mechanism for the neuroprotection might be the inhibition of oxidative damages occurring after acute phase of cerebral ischemia.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Combretaceae/química , Medicamentos Herbarios Chinos/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Animales , Isquemia Encefálica/metabolismo , Supervivencia Celular/efectos de los fármacos , Humanos , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
14.
Front Neurosci ; 18: 1393293, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38770241

RESUMEN

While recent advances in diagnostics and therapeutics offer promising new approaches for Alzheimer's disease (AD) diagnosis and treatment, there is still an unmet need for an effective remedy, suggesting new avenues of research are required. Besides many plausible etiologies for AD pathogenesis, mounting evidence supports a possible role for microbial infections. Various microbes have been identified in the postmortem brain tissues of human AD patients. Among bacterial pathogens in AD, Chlamydia pneumoniae (Cp) has been well characterized in human AD brains and is a leading candidate for an infectious involvement. However, no definitive studies have been performed proving or disproving Cp's role as a causative or accelerating agent in AD pathology and cognitive decline. In this review, we discuss recent updates for the role of Cp in human AD brains as well as experimental models of AD. Furthermore, based on the current literature, we have compiled a list of potential mechanistic pathways which may connect Cp with AD pathology.

15.
Prog Retin Eye Res ; 101: 101273, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38759947

RESUMEN

The retina is an emerging CNS target for potential noninvasive diagnosis and tracking of Alzheimer's disease (AD). Studies have identified the pathological hallmarks of AD, including amyloid ß-protein (Aß) deposits and abnormal tau protein isoforms, in the retinas of AD patients and animal models. Moreover, structural and functional vascular abnormalities such as reduced blood flow, vascular Aß deposition, and blood-retinal barrier damage, along with inflammation and neurodegeneration, have been described in retinas of patients with mild cognitive impairment and AD dementia. Histological, biochemical, and clinical studies have demonstrated that the nature and severity of AD pathologies in the retina and brain correspond. Proteomics analysis revealed a similar pattern of dysregulated proteins and biological pathways in the retina and brain of AD patients, with enhanced inflammatory and neurodegenerative processes, impaired oxidative-phosphorylation, and mitochondrial dysfunction. Notably, investigational imaging technologies can now detect AD-specific amyloid deposits, as well as vasculopathy and neurodegeneration in the retina of living AD patients, suggesting alterations at different disease stages and links to brain pathology. Current and exploratory ophthalmic imaging modalities, such as optical coherence tomography (OCT), OCT-angiography, confocal scanning laser ophthalmoscopy, and hyperspectral imaging, may offer promise in the clinical assessment of AD. However, further research is needed to deepen our understanding of AD's impact on the retina and its progression. To advance this field, future studies require replication in larger and diverse cohorts with confirmed AD biomarkers and standardized retinal imaging techniques. This will validate potential retinal biomarkers for AD, aiding in early screening and monitoring.


Asunto(s)
Enfermedad de Alzheimer , Retina , Enfermedades de la Retina , Enfermedad de Alzheimer/fisiopatología , Humanos , Enfermedades de la Retina/fisiopatología , Enfermedades de la Retina/diagnóstico , Retina/fisiopatología , Animales , Tomografía de Coherencia Óptica/métodos , Péptidos beta-Amiloides/metabolismo , Vasos Retinianos/fisiopatología , Vasos Retinianos/diagnóstico por imagen
16.
Molecules ; 18(3): 3529-42, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23519197

RESUMEN

Terminalia chebula, native to Southeast Asia, is a popular medicinal plant in Ayurveda. It has been previously reported to have strong antioxidant and anti-inflammatory efficacy. In this study, we aimed to investigate if fruit extract from T. chebula might protect neuronal cells against ischemia and related diseases by reduction of oxidative damage and inflammation in rat pheochromocytoma cells (PC12) using in vitro oxygen-glucose deprivation followed by reoxygenation (OGD-R) ischemia and hydrogen peroxide (H2O2) induced cell death. Cell survival was evaluated by a 2-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Free radical scavenging, lipid peroxidation and nitric oxide inhibition were measured by diphenyl-1-picrylhydrazyl (DPPH), thiobarbituric acid (TBA) and Griess reagent, respectively. We found that T. chebula extract: (1) increases the survival of cells subjected to OGD-R by 68%, and H2O2 by 91.4%; (2) scavenges the DPPH free radical by 96% and decreases malondialdehyde (MDA) levels from 237.0 ± 15.2% to 93.7 ± 2.2%; (3) reduces NO production and death rate of microglia cells stimulated by lipopolysaccharide (LPS). These results suggest that T. chebula extract has the potential as a natural herbal medicine, to protect the cells from ischemic damage and the possible mechanism might be the inhibition of oxidative and inflammatory processes.


Asunto(s)
Muerte Celular/efectos de los fármacos , Depuradores de Radicales Libres/farmacología , Microglía/inmunología , Extractos Vegetales/farmacología , Terminalia/química , Animales , Compuestos de Bifenilo/química , Hipoxia de la Célula , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/aislamiento & purificación , Radicales Libres/química , Glucosa/deficiencia , Peróxido de Hidrógeno/farmacología , Peroxidación de Lípido , Lipopolisacáridos/farmacología , Malondialdehído/metabolismo , Microglía/efectos de los fármacos , Oxidantes/farmacología , Estrés Oxidativo , Células PC12 , Picratos/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Ratas
17.
Ageing Res Rev ; 84: 101819, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36526257

RESUMEN

Acetylcholinesterase inhibitors (ChEI) are the global standard of care for the symptomatic treatment of Alzheimer's disease (AD) and show significant positive effects in neurodegenerative diseases with cognitive and behavioral symptoms. Although experimental and large-scale clinical evidence indicates the potential long-term efficacy of ChEI, primary outcomes are generally heterogeneous across outpatient clinics and regional healthcare systems. Sub-optimal dosing or slow tapering, heterogeneous guidelines about the timing for therapy initiation (prodromal versus dementia stages), healthcare providers' ambivalence to treatment, lack of disease awareness, delayed medical consultation, prescription of ChEI in non-AD cognitive disorders, contribute to the negative outcomes. We present an evidence-based overview of determinants, spanning genetic, molecular, and large-scale networks, involved in the response to ChEI in patients with AD and other neurodegenerative diseases. A comprehensive understanding of cerebral and retinal cholinergic system dysfunctions along with ChEI response predictors in AD is crucial since disease-modifying therapies will frequently be prescribed in combination with ChEI. Therapeutic algorithms tailored to genetic, biological, clinical (endo)phenotypes, and disease stages will help leverage inter-drug synergy and attain optimal combined response outcomes, in line with the precision medicine model.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/diagnóstico , Acetilcolinesterasa/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Medicina de Precisión
18.
Front Immunol ; 14: 1155935, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37325640

RESUMEN

Introduction: Osteopontin (OPN; also known as SPP1), an immunomodulatory cytokine highly expressed in bone marrow-derived macrophages (BMMΦ), is known to regulate diverse cellular and molecular immune responses. We previously revealed that glatiramer acetate (GA) stimulation of BMMΦ upregulates OPN expression, promoting an anti-inflammatory, pro-healing phenotype, whereas OPN inhibition triggers a pro-inflammatory phenotype. However, the precise role of OPN in macrophage activation state is unknown. Methods: Here, we applied global proteome profiling via mass spectrometry (MS) analysis to gain a mechanistic understanding of OPN suppression versus induction in primary macrophage cultures. We analyzed protein networks and immune-related functional pathways in BMMΦ either with OPN knockout (OPNKO) or GA-mediated OPN induction compared with wild type (WT) macrophages. The most significant differentially expressed proteins (DEPs) were validated using immunocytochemistry, western blot, and immunoprecipitation assays. Results and discussion: We identified 631 DEPs in OPNKO or GA-stimulated macrophages as compared to WT macrophages. The two topmost downregulated DEPs in OPNKO macrophages were ubiquitin C-terminal hydrolase L1 (UCHL1), a crucial component of the ubiquitin-proteasome system (UPS), and the anti-inflammatory Heme oxygenase 1 (HMOX-1), whereas GA stimulation upregulated their expression. We found that UCHL1, previously described as a neuron-specific protein, is expressed by BMMΦ and its regulation in macrophages was OPN-dependent. Moreover, UCHL1 interacted with OPN in a protein complex. The effects of GA activation on inducing UCHL1 and anti-inflammatory macrophage profiles were mediated by OPN. Functional pathway analyses revealed two inversely regulated pathways in OPN-deficient macrophages: activated oxidative stress and lysosome-mitochondria-mediated apoptosis (e.g., ROS, Lamp1-2, ATP-synthase subunits, cathepsins, and cytochrome C and B subunits) and inhibited translation and proteolytic pathways (e.g., 60S and 40S ribosomal subunits and UPS proteins). In agreement with the proteome-bioinformatics data, western blot and immunocytochemical analyses revealed that OPN deficiency perturbs protein homeostasis in macrophages-inhibiting translation and protein turnover and inducing apoptosis-whereas OPN induction by GA restores cellular proteostasis. Taken together, OPN is essential for macrophage homeostatic balance via the regulation of protein synthesis, UCHL1-UPS axis, and mitochondria-mediated apoptotic processes, indicating its potential application in immune-based therapies.


Asunto(s)
Osteopontina , Complejo de la Endopetidasa Proteasomal , Osteopontina/genética , Osteopontina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteostasis , Proteoma/metabolismo , Macrófagos , Mitocondrias/metabolismo , Apoptosis
19.
Molecules ; 17(12): 14765-77, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23519251

RESUMEN

This study evaluated the anti-obesity effects of HT048, a combination of C. pinnatifida fruit and C. unshiu peel extracts, in high-fat diet (HFD)-induced obese rats. 4-Week-old male Sprague Dawley (SD) rats were divided into normal and high fat diet (HFD) groups. The HFD groups were further divided into five groups treated with distilled water, orlistat (40 mg/kg, twice daily, p.o) and HT048 (30, 100 and 300 mg/kg, twice daily, p.o.) for 12 weeks. Orlistat, an anti-obesity drug, was used as positive control in the HFD-induced obese rats. We measured the food intake, body weight, epididymal adipose tissue and liver weights, and serum total cholesterol (TC), triglyceride (TG), alanine transaminase (ALT), and aspartate aminotransferase (AST) levels. The body weight and epididymal adipose tissue and liver weights of the HT048 100 and 300 mg/kg treated groups were significantly lower than that of the HFD control group. Also, serum TC, TG, ALT, and AST levels in the HT048 100 and 300 mg/kg treated groups were significantly decreased. Moreover, the orlistat treated group showed significantly reduced body weight and improved serum lipoprotein, compared with the HFD control group. These results show that HT048 supplements improved obesity-related body weight and serum lipoprotein parameters in a HFD-induced obese rat model.


Asunto(s)
Fármacos Antiobesidad/farmacología , Dieta Alta en Grasa , Obesidad/tratamiento farmacológico , Fitoterapia , Extractos Vegetales/farmacología , Tejido Adiposo/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Colesterol/sangre , Crataegus/química , Grasas de la Dieta/administración & dosificación , Sinergismo Farmacológico , Frutas/química , Lactonas/farmacología , Masculino , Orlistat , Ratas , Ratas Sprague-Dawley , Triglicéridos/sangre
20.
ACS Chem Neurosci ; 12(14): 2562-2572, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34251185

RESUMEN

Despite being a major global health concern, cerebral ischemia/stroke has limited therapeutic options. Tissue plasminogen activator (tPA) is the only available medication to manage acute ischemic stroke, but this medication is associated with adverse effects and has a narrow therapeutic time window. Curcumin, a polyphenol that is abundantly present in the rhizome of the turmeric plant (Curcuma longa), has shown promising neuroprotective effects in animal models of neurodegenerative diseases, including cerebral ischemia. In the central nervous system (CNS), neuroprotective effects of curcumin have been experimentally validated in Alzheimer's disease, Parkinson's disease, multiple sclerosis, and cerebral ischemia. Curcumin can exert pleiotropic effects in the postischemic brain including antioxidant, anti-inflammatory, antiapoptotic, vasculoprotective, and direct neuroprotective efficacies. Importantly, neuroprotective effects of curcumin has been reported in both ischemic and hemorrhagic stroke models. A broad-spectrum neuroprotective efficacy of curcumin suggested that curcumin can be an appealing therapeutic strategy to treat cerebral ischemia. In this review, we aimed to address the pharmacotherapeutic potential of curcumin in cerebral ischemia including its cellular and molecular mechanisms of neuroprotection revealing curcumin as an appealing therapeutic candidate for cerebral ischemia.


Asunto(s)
Isquemia Encefálica , Curcumina , Fármacos Neuroprotectores , Accidente Cerebrovascular , Animales , Isquemia Encefálica/tratamiento farmacológico , Curcumina/farmacología , Fármacos Neuroprotectores/farmacología , Accidente Cerebrovascular/tratamiento farmacológico , Activador de Tejido Plasminógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA