Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Pain ; 11: 2, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25563474

RESUMEN

BACKGROUND: The treatment of spinal cord injury (SCI)-induced neuropathic pain presents a challenging healthcare problem. The lack of available robust pharmacological treatments underscores the need for novel therapeutic methods and approaches. Due to the complex character of neuropathic pain following SCI, therapies targeting multiple mechanisms may be a better choice for obtaining sufficient long-term pain relief. Previous studies in our lab showed analgesic effects using combinations of an NMDA antagonist peptide [Ser1]histogranin (SHG), and the mu-opioid peptides endomorphins (EMs), in several pain models. As an alternative to drug therapy, this study evaluated the analgesic potential of these peptides when delivered via gene therapy. RESULTS: Lentiviruses encoding SHG and EM-1 and EM-2 were intraspinally injected, either singly or in combination, into rats with clip compression SCI 2 weeks following injury. Treated animals showed significant reduction in mechanical and thermal hypersensitivity, compared to control groups injected with GFP vector only. The antinociceptive effects of individually injected components were modest, but the combination of EMs and SHG produced robust and sustained antinociception. The onset of the analgesic effects was observed between 1-5 weeks post-injection and sustained without decrement for at least 7 weeks. No adverse effects on locomotor function were observed. The involvement of SHG and EMs in the observed antinociception was confirmed by pharmacologic inhibition using intrathecal injection of either the opioid antagonist naloxone or an anti-SHG antibody. Immunohistochemical analysis showed the presence of SHG and EMs in the spinal cord of treated animals, and immunodot-blot analysis of CSF confirmed the presence of these peptides in injected animals. In a separate group of rats, delayed injection of viral vectors was performed in order to mimic a more likely clinical scenario. Comparable and sustained antinociceptive effects were observed in these animals using the SHG-EMs combination vectors compared to the group with early intervention. CONCLUSIONS: Findings from this study support the potential for direct gene therapy to provide a robust and sustained alleviation of chronic neuropathic pain following SCI. The combination strategy utilizing potent mu-opioid peptides with a naturally-derived NMDA antagonist may produce additive or synergistic analgesic effects without the tolerance development for long-term management of persistent pain.


Asunto(s)
Neuralgia/tratamiento farmacológico , Neuralgia/etiología , Péptidos Opioides/uso terapéutico , Proteínas/uso terapéutico , Traumatismos de la Médula Espinal/complicaciones , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Vectores Genéticos/fisiología , Humanos , Hiperalgesia/tratamiento farmacológico , Lentivirus/genética , Masculino , Neuroblastoma/patología , Neuropéptidos/biosíntesis , Neuropéptidos/uso terapéutico , Péptidos Opioides/biosíntesis , Péptidos Opioides/genética , Dimensión del Dolor , Umbral del Dolor/efectos de los fármacos , Proteínas/genética , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos
2.
J Bioenerg Biomembr ; 47(1-2): 133-48, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25358440

RESUMEN

Traumatic brain injury (TBI) is still the leading cause of disability in young adults worldwide. The major mechanisms - diffuse axonal injury, cerebral contusion, ischemic neurological damage, and intracranial hematomas have all been shown to be associated with mitochondrial dysfunction in some form. Mitochondrial dysfunction in TBI patients is an active area of research, and attempts to manipulate neuronal/astrocytic metabolism to improve outcomes have been met with limited translational success. Previously, several preclinical and clinical studies on TBI induced mitochondrial dysfunction have focused on opening of the mitochondrial permeability transition pore (PTP), consequent neurodegeneration and attempts to mitigate this degeneration with cyclosporine A (CsA) or analogous drugs, and have been unsuccessful. Recent insights into normal mitochondrial dynamics and into diseases such as inherited mitochondrial neuropathies, sepsis and organ failure could provide novel opportunities to develop mitochondria-based neuroprotective treatments that could improve severe TBI outcomes. This review summarizes those aspects of mitochondrial dysfunction underlying TBI pathology with special attention to models of penetrating traumatic brain injury, an epidemic in modern American society.


Asunto(s)
Lesiones Encefálicas/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Enfermedades Neurodegenerativas/metabolismo , Adulto , Animales , Astrocitos/metabolismo , Astrocitos/patología , Lesiones Encefálicas/epidemiología , Lesiones Encefálicas/patología , Humanos , Mitocondrias/patología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Enfermedades Neurodegenerativas/epidemiología , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Neuronas/patología
3.
J Neurotrauma ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38445369

RESUMEN

There is a growing body of evidence that the delivery of cell-derived exosomes normally involved in intracellular communication can reduce secondary injury mechanisms after brain and spinal cord injury and improve outcomes. Exosomes are nanometer-sized vesicles that are released by Schwann cells and may have neuroprotective effects by reducing post-traumatic inflammatory processes as well as promoting tissue healing and functional recovery. The purpose of this study was to evaluate the beneficial effects of human Schwann-cell exosomes (hSC-Exos) in a severe model of penetrating ballistic-like brain injury (PBBI) in rats and investigate effects on multiple outcomes. Human Schwann cell processing protocols followed Current Good Manufacturing Practices (cGMP) with exosome extraction and purification steps approved by the Food and Drug Administration for an expanded access single ALS patient Investigational New Drug. Anesthetized male Sprague-Dawley rats (280-350g) underwent PBBI surgery or Sham procedures and, starting 30 min after injury, received either a dose of hSC-Exos or phosphate-buffered saline through the jugular vein. At 48h after PBBI, flow cytometry analysis of cortical tissue revealed that hSC-Exos administration reduced the number of activated microglia and levels of caspase-1, a marker of inflammasome activation. Neuropathological analysis at 21 days showed that hSC-Exos treatment after PBBI significantly reduced overall contusion volume and decreased the frequency of Iba-1 positive activated and amoeboid microglia by immunocytochemical analysis. This study revealed that the systemic administration of hSC-Exos is neuroprotective in a model of severe TBI and reduces secondary inflammatory injury mechanisms and histopathological damage. The administration of hSC-Exos represents a clinically relevant cell-based therapy to limit the detrimental effects of neurotrauma or other progressive neurological injuries by impacting multiple pathophysiological events and promoting neurological recovery.

4.
Acta Neurochir Suppl ; 118: 77-81, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23564108

RESUMEN

Post-traumatic hypothermia has been effective for traumatic brain injury in the laboratory setting. However, hypothermia has not shown efficacy in clinical trials. With the results of a recent clinical trial, we hypothesized that hypothermia might reduce neuronal damage in acute subdural hematoma (ASDH) by blunting the effects of reperfusion injury. Twenty rats were induced with ASDH and placed into one of four groups. The normothermia group was maintained at 37 °C throughout. In the early hypothermia group, brain temperature was reduced to 33 °C 30 min prior to craniotomy. In the late hypothermia group, brain temperature was lowered to 33 °C 30 min after decompression. The sham group had no ASDH and underwent only craniotomy with normothermia. For estimation of glial and neuronal cell damage, we analyzed serum and microdialysate (using a 100kD probe) concentrations of: glial fibrillary acidic protein (GFAP) and ubiquitin carboxyl--terminal hydrolase -L1 (UCH-L1). Hypothermia induced early significantly reduced the concentration of MD UCH-L1. In conclusion, hypothermia induced early may reduce neuronal cell damage in the reperfusion injury, which was induced after ASDH removal. MD UCH-L1 seems like a good -candidate for a sensitive microdialysate biomarker for -neuronal injury and outcome.


Asunto(s)
Hematoma Subdural/complicaciones , Hematoma Subdural/patología , Hipotermia Inducida/métodos , Neuronas/patología , Animales , Craneotomía/métodos , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Microdiálisis , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/prevención & control , Factores de Tiempo , Ubiquitina Tiolesterasa/metabolismo
5.
Acta Neurochir Suppl ; 118: 223-7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23564137

RESUMEN

BACKGROUND: Neuromonitoring with microdialysis has the potential for early detection of metabolic derangements associated with TBI. METHODS: 1,260 microdialysis samples from 12 TBI patients were analyzed for glucose, -lactate, pyruvate, lactate/pyruvate ratio (LPR), and lactate/glucose ratio (LGR). Analytes were correlated with the Glasgow Coma Scale (GCS) before surgery and with the Glasgow Outcome Scale (GOS) at the time of discharge. The patients were divided into two groups for GCS: 3-6 and 7-9, and for GOS 1-3 and 4-5. Chi-squared test was performed for correlations. RESULTS: Glucose, lactate levels, and LGR were high in TBI patients with GCS 3-6 (p < 0.0001). Pyruvate level was lower in patients with GCS 7-9 (p < 0.001). LPR was higher in patients with GCS 3-6 (p < 0.05). High glucose, lactate level (p < 0.001), and LPR (p < 0.01) was observed in patients with GOS 1-3. Pyruvate level was low in patients with GOS 1-3 (p < 0.001). LGR was higher in patient with better outcome (GOS 4-5). CONCLUSION: After craniotomy extracellular glucose and lactate were good "biomarkers" of cerebral damage in TBI patients. We consider that high extracellular lactate and low glucose is an indicator of severe neurological damage and poor outcome, because of impaired brain metabolism.


Asunto(s)
Aminoácidos/metabolismo , Biomarcadores/metabolismo , Lesiones Encefálicas/metabolismo , Encéfalo/metabolismo , Microdiálisis , Adolescente , Adulto , Anciano , Femenino , Escala de Consecuencias de Glasgow , Glucosa/metabolismo , Humanos , Ácido Láctico/metabolismo , Masculino , Persona de Mediana Edad , Adulto Joven
6.
PLoS One ; 18(5): e0285633, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37192214

RESUMEN

Traumatic brain injury (TBI) often results in long-lasting patterns of neurological deficits including motor, sensory, and cognitive abnormalities. Cranial gunshot survivors are among the most disabled TBI patients and face a lifetime of disability with no approved strategies to protect or repair the brain after injury. Recent studies using a model of penetrating TBI (pTBI) have reported that human neural stem cells (hNSCs) transplantation can lead to dose and location-dependent neuroprotection. Evidence for regional patterns of microglial activation has also been reported after pTBI with evidence for microglial cell death by pyroptosis. Because of the importance of injury-induced microglial activation in the pathogenesis of TBI, we tested the hypothesis that dose-dependent hNSC mediated neuroprotection after pTBI was associated with reduced microglial activation in pericontusional cortical areas. To test this hypothesis, quantitative microglial/macrophage Iba1 immunohistochemistry and Sholl analysis was conducted to investigate the arborization patterns using four experimental groups including, (i) Sham operated (no injury) + low dose (0.16 million cells/rat), (ii) pTBI + vehicle (no cells), (iii) pTBI + low dose hNSCs (0.16 million/rat), and (iv) pTBI + high dose hNSCs (1.6 million cells/rat). At 3 months post-transplantation (transplants at one week after pTBI), the total number of intersections was significantly reduced in vehicle treated pTBI animals versus sham operated controls indicating increased microglia/macrophage activation. In contrast, hNSC transplantation led to a dose-dependent increase in the number of intersections compared to pTBI vehicle indicating less microglia/macrophage activation. The peak of Sholl intersections at 1 µm from the center of the microglia/macrophages ranged from ~6,500-14,000 intersections for sham operated, ~250-500 intersections for pTBI vehicle, ~550-1,000 intersections for pTBI low dose, and ~2,500-7,500 intersections for pTBI high dose. Plotting data along the rostrocaudal axis also showed that pericontusional cortical areas protected by hNSC transplantation had increased intersections compared to nontreated pTBI animals. These studies using a non-biased Sholl analysis demonstrated a dose-dependent reduction in inflammatory cell activation that may be associated with a neuroprotective effect driven by the cellular transplant in perilesional regions after pTBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Células-Madre Neurales , Humanos , Ratas , Animales , Microglía/metabolismo , Activación de Macrófagos , Lesiones Traumáticas del Encéfalo/patología , Células-Madre Neurales/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad
7.
Neurotrauma Rep ; 4(1): 225-235, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37095855

RESUMEN

Penetrating traumatic brain injury (pTBI) is increasingly survivable, but permanently disabling as adult mammalian nervous system does not regenerate. Recently, our group demonstrated transplant location-dependent neuroprotection and safety of clinical trial-grade human neural stem cell (hNSC) transplantation in a rodent model of acute pTBI. To evaluate whether longer injury-transplantation intervals marked by chronic inflammation impede engraftment, 60 male Sprague-Dawley rats were randomized to three sets. Each set was divided equally into two groups: 1) with no injury (sham) or 2) pTBI. After either 1 week (groups 1 and 2), 2 weeks (groups 3 and 4), or 4 weeks after injury (groups 5 and 6), each animal received 0.5 million hNSCs perilesionally. A seventh group of pTBI animals treated with vehicle served as the negative control. All animals were allowed to survive 12 weeks with standard chemical immunosuppression. Motor capacity was assessed pre-transplant to establish injury-induced deficit and followed by testing at 8 and 12 weeks after transplantation. Animals were euthanized, perfused, and examined for lesion size, axonal degeneration, and engraftment. Compared to vehicle, transplanted groups showed a trend for reduced lesion size and axonal injury across intervals. Remote secondary axonal injury was significantly reduced in groups 2 and 4, but not in group 6. The majority of animals showed robust engraftment independent of the injury-transplant time interval. Modest amelioration of motor deficit paralleled the axonal injury trend. In aggregate, pTBI-induced remote secondary axonal injury was resolved by early, but not delayed, hNSC transplantation.

8.
Cureus ; 14(4): e23804, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35392277

RESUMEN

Traumatic brain injury (TBI) is increasingly a major cause of disability across the globe. The current methods of diagnosis are inadequate at classifying patients and prognosis. TBI is a diagnostic and therapeutic challenge. There is no Food and Drug Administration (FDA)-approved treatment for TBI yet. It took about 16 years of preclinical research to develop accurate and objective diagnostic measures for TBI. Two brain-specific protein biomarkers, namely, ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein, have been extensively characterized. Recently, the two biomarkers were approved by the FDA as the first blood-based biomarker, Brain Trauma Indicator™ (BTI™), via the Breakthrough Devices Program. This scoping review presents (i) TBI diagnosis challenges, (ii) the process behind the FDA approval of biomarkers, and (iii) known unknowns in TBI biomarker biology. The current lag in TBI incidence and hospitalization can be reduced if digital biomarkers such as hard fall detection are standardized and used as a mechanism to alert paramedics to an unresponsive trauma patient.

9.
Brain Res ; 1791: 148002, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35810769

RESUMEN

Traumatic brain injuries (TBI) often produce disability in survivors due to unresolved inflammation and progressive neurodegeneration. The central nervous system in mammals is incapable of self-repair. Two decades of preclinical studies and clinical trials have provided insights into TBI pathophysiology that could be utilized to develop clinically relevant therapy. Our laboratory recently reported efficacy of clinical trial grade fetal human neural stem cells (hNSCs) in immunosuppressed rats with penetrating traumatic brain injury (pTBI). Next, in compliance with the United States Food and Drug Administration (USFDA) guidance, this study explores safety by assessing the tumorigenicity potential of intracranial hNSC transplants in athymic rats with pTBI. First, the maximum tolerated dose (MTD) was determined. Then, forty athymic pTBI rats were randomized to either: Group A. pTBI + vehicle or Group B. pTBI + hNSCs at MTD one week after injury with 6-months survival, sufficient time to uncover transplant associated tumorigenicity. A board-certified Pathologist examined hematoxylin-eosin (H&E), Ki67 immunostained brain and spinal cord, serial sections along with several abnormal peripheral masses for evidence of lesion, transplant, and oncogenesis. There was no evidence of transplant derived tumors or oncogenic tissue necrosis. Consistent with athymic literature, the lesion remained unchanged even after robust hNSC engraftment. This safety study supports the conclusion that hNSCs are safe for transplantation in pTBI. The differences in lesion expansion between immunosuppressed and athymic rats in the presence of hNSCs suggests an unexpected role for thymus derived cells in resolution of trauma induced inflammation.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Traumatismos Penetrantes de la Cabeza , Células-Madre Neurales , Animales , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/terapia , Diferenciación Celular/fisiología , Humanos , Inflamación , Mamíferos , Células-Madre Neurales/patología , Ratas , Ratas Desnudas
10.
Pharmacol Biochem Behav ; 205: 173182, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33774007

RESUMEN

Cannabinoid (CB) receptor agonists show robust antinociceptive effects in various pain models. However, most of the clinically potent CB1 receptor-active drugs derived from cannabis are considered concerning due to psychotomimetic side effects. Selective CB receptor ligands that do not induce CNS side effects are of clinical interest. The venoms of marine snail Conus are a natural source of various potent analgesic peptides, some of which are already FDA approved. In this study we evaluated the ability of several Conus venom extracts to interact with CB1 receptor. HEK293 cells expressing CB1 receptors were treated with venom extracts and CB1 receptor internalization was analyzed by immunofluorescence. Results showed C. textile (C. Tex) and C. miles (C. Mil) samples as the most potent. These were serially subfractionated by HPLC for subsequent analysis by internalization assays and for analgesic potency evaluated in the formalin test and after peripheral nerve injury. Intrathecal injection of C. Tex and C. Mil subfractions reduced flinching/licking behavior during the second phase of formalin test and attenuated thermal and mechanical allodynia in nerve injury model. Treatment with proteolytic enzymes reduced CB1 internalization of subfractions, indicating the peptidergic nature of CB1 active component. Further HPLC purification revealed two potent antinociceptive subfractions within C. Tex with CB1 and possible CB2 activity, with mild to no side effects in the CB tetrad assessment. CB conopeptides can be isolated from these active Conus venom-derived samples and further developed as novel analgesic agents for the treatment of chronic pain using cell based or gene therapy approaches.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Dolor Crónico/tratamiento farmacológico , Venenos de Moluscos/farmacología , Analgésicos/farmacología , Animales , Conducta Animal/efectos de los fármacos , Agonistas de Receptores de Cannabinoides/administración & dosificación , Cannabinoides/farmacología , Dolor Crónico/metabolismo , Caracol Conus/química , Terapia Genética/métodos , Células HEK293 , Humanos , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Inyecciones Espinales , Venenos de Moluscos/administración & dosificación , Dimensión del Dolor/efectos de los fármacos , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/metabolismo , Ratas , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo
11.
Neurotrauma Rep ; 2(1): 27-38, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33748811

RESUMEN

Traumatic brain injury (TBI) is a leading cause of death and disability globally. No drug treatments are available, so interest has turned to endogenous neural stem cells (NSCs) as alternative strategies for treatment. We hypothesized that regulation of cell proliferation through modulation of the sonic hedgehog pathway, a key NSC regulatory pathway, could lead to functional improvement. We assessed sonic hedgehog (Shh) protein levels in the cerebrospinal fluid (CSF) of patients with TBI. Using the cortical contusion injury (CCI) model in rodents, we used pharmacological modulators of Shh signaling to assess cell proliferation within the injured cortex using the marker 5-Ethynyl-2'-deoxyuridine (EdU); 50mg/mL. The phenotype of proliferating cells was determined and quantified. Motor function was assessed using the rotarod test. In patients with TBI there is a reduction of Shh protein in CSF compared with control patients. In rodents, following a severe CCI, quiescent cells become activated. Pharmacologically modulating the Shh signaling pathway leads to changes in the number of newly proliferating injury-induced cells. Upregulation of Shh signaling with Smoothened agonist (SAG) results in an increase of newly proliferating cells expressing glial fibrillary acidic protein (GFAP), whereas the Shh signaling inhibitor cyclopamine leads to a reduction. Some cells expressed doublecortin (DCX) but did not mature into neurons. The SAG-induced increase in proliferation is associated with improved recovery of motor function. Localized restoration of Shh in the injured rodent brain, via increased Shh signaling, has the potential to sustain endogenous cell proliferation and the mitigation of TBI-induced motor deficits albeit without the neuronal differentiation.

12.
CNS Neurol Disord Drug Targets ; 20(3): 216-227, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-32951588

RESUMEN

Traumatic Brain Injury (TBI) is still the worldwide leading cause of mortality and morbidity in young adults. Improved safety measures and advances in critical care have increased chances of surviving a TBI, however, numerous secondary mechanisms contribute to the injury in the weeks and months that follow TBI. The past 4 decades of research have addressed many of the metabolic impairments sufficient to mitigate mortality, however, an enduring secondary mechanism, i.e. neuroinflammation, has been intractable to current therapy. Neuroinflammation is particularly difficult to target with pharmacological agents due to lack of specificity, the blood brain barrier, and an incomplete understanding of the protective and pathologic influences of inflammation in TBI. Recent insights into TBI pathophysiology have established microglial activation as a hallmark of all types of TBI. The inflammatory response to injury is necessary and beneficial while the death of activated microglial is not. This review presents new insights on the therapeutic and maladaptive features of the immune response after TBI with an emphasis on microglial polarization, followed by a discussion of potential targets for pharmacologic and non-pharmacologic treatments. In aggregate, this review presents a rationale for guiding TBI inflammation towards neural repair and regeneration rather than secondary injury and degeneration, which we posit could improve outcomes and reduce lifelong disease burden in TBI survivors.


Asunto(s)
Lesiones Traumáticas del Encéfalo/complicaciones , Microglía/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Animales , Barrera Hematoencefálica/metabolismo , Modelos Animales de Enfermedad , Humanos , Inflamación/tratamiento farmacológico , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Transducción de Señal/efectos de los fármacos
13.
Brain Commun ; 2(2): fcaa175, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33305261

RESUMEN

Clinical trials examining neuroprotective strategies after brain injury, including those targeting cell death mechanisms, have been underwhelming. This may be in part due to an incomplete understanding of the signalling mechanisms that induce cell death after traumatic brain injury. The recent identification of a new family of death receptors that initiate pro-cell death signals in the absence of their ligand, called dependence receptors, provides new insight into the factors that contribute to brain injury. Here, we show that blocking the dependence receptor signalling of EphB3 improves oligodendrocyte cell survival in a murine controlled cortical impact injury model, which leads to improved myelin sparing, axonal conductance and behavioural recovery. EphB3 also functions as a cysteine-aspartic protease substrate, where the recruitment of injury-dependent adaptor protein Dral/FHL-2 together with capsase-8 or -9 leads to EphB3 cleavage to initiate cell death signals in murine and human traumatic brain-injured patients, supporting a conserved mechanism of cell death. These pro-apoptotic responses can be blocked via exogenous ephrinB3 ligand administration leading to improved oligodendrocyte survival. In short, our findings identify a novel mechanism of oligodendrocyte cell death in the traumatically injured brain that may reflect an important neuroprotective strategy in patients.

14.
J Trauma Acute Care Surg ; 88(4): 477-485, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31626023

RESUMEN

BACKGROUND: Penetrating traumatic brain injury induces chronic inflammation that drives persistent tissue loss long after injury. Absence of endogenous reparative neurogenesis and effective neuroprotective therapies render injury-induced disability an unmet need. Cell replacement via neural stem cell transplantation could potentially rebuild the tissue and alleviate penetrating traumatic brain injury disability. The optimal transplant location remains to be determined. METHODS: To test if subacute human neural stem cell (hNSC) transplant location influences engraftment, lesion expansion, and motor deficits, rats (n = 10/group) were randomized to the following four groups (uninjured and three injured): group 1 (Gr1), uninjured with cell transplants (sham+hNSCs), 1-week postunilateral penetrating traumatic brain injury, after establishing motor deficit; group 2 (Gr2), treated with vehicle (media, no cells); group 3 (Gr3), hNSCs transplanted into lesion core (intra); and group 4 (Gr4), hNSCs transplanted into tissue surrounding the lesion (peri). All animals were immunosuppressed for 12 weeks and euthanized following motor assessment. RESULTS: In Gr2, penetrating traumatic brain injury effect manifests as porencephalic cyst, 22.53 ± 2.87 (% of intact hemisphere), with p value of <0.0001 compared with uninjured Gr1. Group 3 lesion volume at 17.44 ± 2.11 did not differ significantly from Gr2 (p = 0.36), while Gr4 value, 9.17 ± 1.53, differed significantly (p = 0.0001). Engraftment and neuronal differentiation were significantly lower in the uninjured Gr1 (p < 0.05), compared with injured groups. However, there were no differences between Gr3 and Gr4. Significant increase in cortical tissue sparing (p = 0.03), including motor cortex (p = 0.005) was observed in Gr4 but not Gr3. Presence of transplant within lesion or in penumbra attenuated motor deficit development (p < 0.05) compared with Gr2. CONCLUSION: In aggregate, injury milieu supports transplanted cell proliferation and differentiation independent of location. Unexpectedly, cortical sparing is transplant location dependent. Thus, apart from cell replacement and transplant mediated deficit amelioration, transplant location-dependent neuroprotection may be key to delaying onset or preventing development of injury-induced disability. LEVEL OF EVIDENCE: Preclinical study evaluation of therapeutic intervention, level VI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/terapia , Traumatismos Penetrantes de la Cabeza/terapia , Trastornos Motores/prevención & control , Células-Madre Neurales/trasplante , Neuroprotección , Animales , Encéfalo/citología , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/patología , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Modelos Animales de Enfermedad , Traumatismos Penetrantes de la Cabeza/complicaciones , Traumatismos Penetrantes de la Cabeza/patología , Humanos , Masculino , Trastornos Motores/etiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Neuronas/patología , Ratas , Trasplante Heterólogo/métodos
15.
Neuropharmacology ; 145(Pt B): 177-198, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30267729

RESUMEN

Traumatic brain injury (TBI) has been recognized as one of the major public health issues that leads to devastating neurological disability. As a consequence of primary and secondary injury phases, neuronal loss following brain trauma leads to pathophysiological alterations on the molecular and cellular levels that severely impact the neuropsycho-behavioral and motor outcomes. Thus, to mitigate the neuropathological sequelae post-TBI such as cerebral edema, inflammation and neural degeneration, several neurotherapeutic options have been investigated including drug intervention, stem cell use and combinational therapies. These treatments aim to ameliorate cellular degeneration, motor decline, cognitive and behavioral deficits. Recently, the use of neural stem cells (NSCs) coupled with selective drug therapy has emerged as an alternative treatment option for neural regeneration and behavioral rehabilitation post-neural injury. Given their neuroprotective abilities, NSC-based neurotherapy has been widely investigated and well-reported in numerous disease models, notably in trauma studies. In this review, we will elaborate on current updates in cell replacement therapy in the area of neurotrauma. In addition, we will discuss novel combination drug therapy treatments that have been investigated in conjunction with stem cells to overcome the limitations associated with stem cell transplantation. Understanding the regenerative capacities of stem cell and drug combination therapy will help improve functional recovery and brain repair post-TBI. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".


Asunto(s)
Lesiones Traumáticas del Encéfalo/terapia , Fármacos Neuroprotectores/uso terapéutico , Trasplante de Células Madre , Animales , Terapia Combinada , Humanos , Fármacos Neuroprotectores/farmacología
16.
Front Neurol ; 10: 82, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30809187

RESUMEN

Human neural stem cells (hNSCs) transplantation in several brain injury models has established their therapeutic potential. However, the feasibility of hNSCs transplantation is still not clear for acute subdural hematoma (ASDH) brain injury that needs external decompression. Thus, the aim of this pilot study was to test feasibility using a rat ASDH decompression model with two clinically relevant transplantation methods. Two different methods, in situ stereotactic injection and hNSC-embedded matrix seating on the brain surface, were attempted. Athymic rats were randomized to uninjured or ASDH groups (F344/NJcl-rnu/rnu, n = 7-10/group). Animals in injury group were subjected to ASDH, and received decompressive craniectomy and 1-week after decompression surgery were transplanted with green fluorescent protein (GFP)-transduced hNSCs using one of two approaches. Histopathological examinations at 4 and 8 weeks showed that the GFP-positive hNSCs survived in injured brain tissue, extended neurite-like projections resembling neural dendrites. The in situ transplantation group had greater engraftment of hNSCs than matrix embedding approach. Immunohistochemistry with doublecortin, NeuN, and GFAP at 8 weeks after transplantation showed that transplanted hNSCs remained as immature neurons and did not differentiate toward to glial cell lines. Motor function was assessed with rotarod, compared to control group (n = 10). The latency to fall from the rotarod in hNSC in situ transplanted rats was significantly higher than in control rats (median, 113 s in hNSC vs. 69 s in control, P = 0.02). This study first demonstrates the robust engraftment of in situ transplanted hNSCs in a clinically-relevant ASDH decompression rat model. Further preclinical studies with longer study duration are warranted to verify the effectiveness of hNSC transplantation in amelioration of TBI induced deficits.

17.
Cell Transplant ; 17(4): 445-55, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18522246

RESUMEN

Cell-based therapy for neuropathic pain could provide analgesics to local pain modulatory regions in a sustained, renewable fashion. In order to provide enhanced analgesic efficacy, transplantable cells may be engineered to produce complementary or increased levels of analgesic peptides. In addition, genetic labeling of modified cells is desirable for identification and tracking, but it should be retained intracellularly as desired analgesic peptides are secreted. Usually constructs encode proteins destined for either extra- or intracellular compartments, as these pathways do not cross. However, interactions between intracellular destinations provide a window of opportunity to overcome this limitation. In this report, we have explored this approach using a potential supplementary analgesic peptide, [Ser1]-histogranin (SHG), the stable synthetic derivative of a naturally occurring peptide with N-methyl D-aspartate (NMDA) antagonistic properties. A synthetic SHG gene was combined with (i) nerve growth factor-beta (NGF-beta) amino-terminal signal peptide to enable secretion, and (ii) a fluorescent cellular label (mRFP) with intervening cathepsin L cleavage site, and subcloned into a lentiviral vector. In addition, an endoplasmic retention signal, KDEL, was added to enable retrieval of mRFP. Using immunocytochemistry and confocal microscopic profile analysis, cells transduced by such lentiviruses were shown to synthesize a single SHG-mRFP polypeptide that was processed, targeted to expected subcellular destinations in several cell types. Dot blot and Western analysis revealed stable transduction and long-term secretion of SHG from PC12 cells in vitro. Transplantation of such cells provided modest analgesia in a rodent pain model consistent with low levels of SHG peptide in the cerebrospinal fluid (CSF). These results suggest that it is possible to deliver proteins with different final destinations from a single construct, such as pharmacologically active peptide for secretion and intracellular label for identifying transplantable cells.


Asunto(s)
Analgésicos , Dolor/tratamiento farmacológico , Péptidos , Analgésicos/metabolismo , Analgésicos/uso terapéutico , Animales , Línea Celular , Trasplante de Células , Humanos , Oligopéptidos , Péptidos/genética , Péptidos/metabolismo , Péptidos/uso terapéutico , Señales de Clasificación de Proteína , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Coloración y Etiquetado
18.
Behav Brain Res ; 340: 23-28, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-27235716

RESUMEN

The prognosis for patients with traumatic brain injury (TBI) with subdural hematoma (SDH) remains poor. In accordance with an increasing elderly population, the incidence of geriatric TBI with SDH is rising. An important contributor to the neurological injury associated with SDH is the ischemic damage which is caused by raised intracranial pressure (ICP) producing impaired cerebral perfusion. To control intracranial hypertension, the current management consists of hematoma evacuation with or without decompressive craniotomy. This removal of the SDH results in the immediate reversal of global ischemia accompanied by an abrupt reduction of mass lesion and an ensuing reperfusion injury. Experimental models can play a critical role in improving our understanding of the underlying pathophysiology and in exploring potential treatments for patients with SDH. In this review, we describe the epidemiology, pathophysiology and clinical background of SDH.


Asunto(s)
Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/fisiopatología , Hematoma Subdural/complicaciones , Hematoma Subdural/fisiopatología , Daño por Reperfusión/fisiopatología , Animales , Lesiones Traumáticas del Encéfalo/epidemiología , Lesiones Traumáticas del Encéfalo/cirugía , Craniectomía Descompresiva , Modelos Animales de Enfermedad , Hematoma Subdural/epidemiología , Hematoma Subdural/cirugía , Humanos , Ratas , Daño por Reperfusión/epidemiología , Daño por Reperfusión/etiología
19.
J Neurotrauma ; 35(14): 1681-1693, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29439605

RESUMEN

Penetrating traumatic brain injury (PTBI) is a significant cause of death and disability in the United States. Inflammasomes are one of the key regulators of the interleukin (IL)-1ß mediated inflammatory responses after traumatic brain injury. However, the contribution of inflammasome signaling after PTBI has not been determined. In this study, adult male Sprague-Dawley rats were subjected to sham procedures or penetrating ballistic-like brain injury (PBBI) and sacrificed at various time-points. Tissues were assessed by immunoblot analysis for expression of IL-1ß, IL-18, and components of the inflammasome: apoptosis-associated speck-like protein containing a caspase-activation and recruitment domain (ASC), caspase-1, X-linked inhibitor of apoptosis protein (XIAP), nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3), and gasdermin-D (GSDMD). Specific cell types expressing inflammasome proteins also were evaluated immunohistochemically and assessed quantitatively. After PBBI, expression of IL-1ß, IL-18, caspase-1, ASC, XIAP, and NLRP3 peaked around 48 h. Brain protein lysates from PTBI animals showed pyroptosome formation evidenced by ASC laddering, and also contained increased expression of GSDMD at 48 h after injury. ASC-positive immunoreactive neurons within the perilesional cortex were observed at 24 h. At 48 h, ASC expression was concentrated in morphologically activated cortical microglia. This expression of ASC in activated microglia persisted until 12 weeks following PBBI. This is the first report of inflammasome activation after PBBI. Our results demonstrate cell-specific patterns of inflammasome activation and pyroptosis predominantly in microglia, suggesting a sustained pro-inflammatory state following PBBI, thus offering a therapeutic target for this type of brain injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo/inmunología , Traumatismos Penetrantes de la Cabeza/inmunología , Inflamasomas/inmunología , Microglía/inmunología , Animales , Lesiones Traumáticas del Encéfalo/patología , Traumatismos Penetrantes de la Cabeza/patología , Masculino , Microglía/patología , Ratas , Ratas Sprague-Dawley
20.
Front Neurol ; 9: 1097, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30719019

RESUMEN

Traumatic brain injury (TBI) is the largest cause of death and disability of persons under 45 years old, worldwide. Independent of the distribution, outcomes such as disability are associated with huge societal costs. The heterogeneity of TBI and its complicated biological response have helped clarify the limitations of current pharmacological approaches to TBI management. Five decades of effort have made some strides in reducing TBI mortality but little progress has been made to mitigate TBI-induced disability. Lessons learned from the failure of numerous randomized clinical trials and the inability to scale up results from single center clinical trials with neuroprotective agents led to the formation of organizations such as the Neurological Emergencies Treatment Trials (NETT) Network, and international collaborative comparative effectiveness research (CER) to re-orient TBI clinical research. With initiatives such as TRACK-TBI, generating rich and comprehensive human datasets with demographic, clinical, genomic, proteomic, imaging, and detailed outcome data across multiple time points has become the focus of the field in the United States (US). In addition, government institutions such as the US Department of Defense are investing in groups such as Operation Brain Trauma Therapy (OBTT), a multicenter, pre-clinical drug-screening consortium to address the barriers in translation. The consensus from such efforts including "The Lancet Neurology Commission" and current literature is that unmitigated cell death processes, incomplete debris clearance, aberrant neurotoxic immune, and glia cell response induce progressive tissue loss and spatiotemporal magnification of primary TBI. Our analysis suggests that the focus of neuroprotection research needs to shift from protecting dying and injured neurons at acute time points to modulating the aberrant glial response in sub-acute and chronic time points. One unexpected agent with neuroprotective properties that shows promise is transplantation of neural stem cells. In this review we present (i) a short survey of TBI epidemiology and summary of current care, (ii) findings of past neuroprotective clinical trials and possible reasons for failure based upon insights from human and preclinical TBI pathophysiology studies, including our group's inflammation-centered approach, (iii) the unmet need of TBI and unproven treatments and lastly, (iv) present evidence to support the rationale for sub-acute neural stem cell therapy to mediate enduring neuroprotection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA