Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Global Biogeochem Cycles ; 37(1): e2022GB007523, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37034114

RESUMEN

Periodic blooms of salps (pelagic tunicates) can result in high export of organic matter, leading to an "outsized" role in the ocean's biological carbon pump (BCP). However, due to their episodic and patchy nature, salp blooms often go undetected and are rarely included in measurements or models of the BCP. We quantified salp-mediated export processes in the northeast subarctic Pacific Ocean in summer of 2018 during a bloom of Salpa aspera. Salps migrated from 300 to 750 m during the day into the upper 100 m at night. Salp fecal pellet production comprised up to 82% of the particulate organic carbon (POC) produced as fecal pellets by the entire epipelagic zooplankton community. Rapid sinking velocities of salp pellets (400-1,200 m d-1) and low microbial respiration rates on pellets (<1% of pellet C respired day-1) led to high salp pellet POC export from the euphotic zone-up to 48% of total sinking POC across the 100 m depth horizon. Salp active transport of carbon by diel vertical migration and carbon export from sinking salp carcasses was usually <10% of the total sinking POC flux. Salp-mediated export markedly increased BCP efficiency, increasing by 1.5-fold the proportion of net primary production exported as POC across the base of the euphotic zone and by 2.6-fold the proportion of this POC flux persisting 100 m below the euphotic zone. Salps have unique and important effects on ocean biogeochemistry and, especially in low flux settings, can dramatically increase BCP efficiency and thus carbon sequestration.

2.
Glob Chang Biol ; 27(3): 506-520, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33107157

RESUMEN

The effects of climate warming on ecosystem dynamics are widespread throughout the world's oceans. In the Northeast Pacific, large-scale climate patterns such as the El Niño/Southern Oscillation and Pacific Decadal Oscillation, and recently unprecedented warm ocean conditions from 2014 to 2016, referred to as a marine heatwave (MHW), resulted in large-scale ecosystem changes. Larval fishes quickly respond to environmental variability and are sensitive indicators of ecosystem change. Categorizing ichthyoplankton dynamics across marine ecosystem in the Northeast Pacific can help elucidate the magnitude of assemblage shifts, and whether responses are synchronous or alternatively governed by local responses to regional oceanographic conditions. We analyzed time-series data of ichthyoplankton abundances from four ecoregions in the Northeast Pacific ranging from subarctic to subtropical: the Gulf of Alaska (1981-2017), British Columbia (2001-2017), Oregon (1998-2017), and the southern California Current (1981-2017). We assessed the impact of the recent (2014-2016) MHW and how ichthyoplankton assemblages responded to past major climate perturbations since 1981 in these ecosystems. Our results indicate that the MHW caused widespread changes in the ichthyoplankton fauna along the coast of the Northeast Pacific Ocean, but impacts differed between marine ecosystems. For example, abundances for most dominant taxa were at all-time lows since the beginning of sampling in the Gulf of Alaska and British Columbia, while in Oregon and the southern California Current species richness increased as did abundances of species associated with warmer waters. Lastly, species associated with cold waters also increased in abundances close to shore in southern California during the MHW, a pattern that was distinctly different from previous El Niño events. We also found several large-scale, synchronized ichthyoplankton assemblage composition shifts during past major climate events. Current climate projections suggest that MHWs will become more intense and thus our findings can help project future changes in larval dynamics, allowing for improved ecosystem management decisions.


Asunto(s)
Ecosistema , Alaska , Animales , Colombia Británica , Océanos y Mares , Oregon , Océano Pacífico
3.
Arch Environ Contam Toxicol ; 69(3): 320-30, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26066061

RESUMEN

Microplastics are increasingly recognized as being widespread in the world's oceans, but relatively little is known about ingestion by marine biota. In light of the potential for microplastic fibers and fragments to be taken up by small marine organisms, we examined plastic ingestion by two foundation species near the base of North Pacific marine food webs, the calanoid copepod Neocalanus cristatus and the euphausiid Euphausia pacifia. We developed an acid digestion method to assess plastic ingestion by individual zooplankton and detected microplastics in both species. Encounter rates resulting from ingestion were 1 particle/every 34 copepods and 1/every 17 euphausiids (euphausiids > copepods; p = 0.01). Consistent with differences in the size selection of food between these two zooplankton species, the ingested particle size was greater in euphausiids (816 ± 108 µm) than in copepods (556 ± 149 µm) (p = 0.014). The contribution of ingested microplastic fibres to total plastic decreased with distance from shore in euphausiids (r (2) = 70, p = 0.003), corresponding to patterns in our previous observations of microplastics in seawater samples from the same locations. This first evidence of microplastic ingestion by marine zooplankton indicate that species at lower trophic levels of the marine food web are mistaking plastic for food, which raises fundamental questions about potential risks to higher trophic level species. One concern is risk to salmon: We estimate that consumption of microplastic-containing zooplankton will lead to the ingestion of 2-7 microplastic particles/day by individual juvenile salmon in coastal British Columbia, and ≤91 microplastic particles/day in returning adults.


Asunto(s)
Monitoreo del Ambiente , Cadena Alimentaria , Plásticos/análisis , Contaminantes Químicos del Agua/análisis , Zooplancton , Animales , Organismos Acuáticos , Biota , Colombia Británica , Copépodos , Océano Pacífico , Agua de Mar/química
4.
MethodsX ; 12: 102676, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38617899

RESUMEN

Identifying biogeographic regions through cluster analysis of species distribution data is a common method for partitioning ecosystems. Selecting the appropriate cluster analysis method requires a comparison of multiple algorithms. In this study, we demonstrate a data-driven process to select a method for bioregionalization based on community data and test its robustness to data variability following these steps: •We aggregated and curated zooplankton community observations from expeditions in the Northeast Pacific.•We determined the best bioregionalization approach by comparing nine cluster analysis methods using ten goodness of clustering indices.•We evaluated the robustness of the bioregionalization to different sources of sampling and taxonomic variability by comparing the bioregionalization of the overall dataset with bioregionalizations of subsets of the data. The K-means clustering of the log-chord transformed abundance was selected as the optimal method for bioregionalization of the zooplankton dataset. This clustering resulted in the emergence of four bioregions along the cross-shelf gradient: the Offshore, Deep Shelf, Nearshore, and Deep Fjord bioregions. The robustness analyses demonstrated that the bioregionalization was consistent despite variability in the spatial and temporal frequency of sampling, sampling methodology, and taxonomic coverage.

5.
PLoS One ; 16(1): e0245941, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33494097

RESUMEN

The Strait of Georgia, Canada, has complex interactions among natural and human pressures that confound understanding of changes in this system. We report on the interannual variability in biomass of 12 zooplankton taxonomic groups in the deep (bottom depths greater than 50 m) central and northern Strait of Georgia from 1996 to 2018, and their relationships with 10 physical variables. Total zooplankton biomass was dominated (76%) by large-sized crustaceans (euphausiids, large and medium size calanoid copepods, amphipods). The annual anomaly of total zooplankton biomass was highest in the late 1990s, lowest in the mid-2000s, and generally above its climatological (1996-2010) average after 2011, although many individual groups had different patterns. Two latent trends (derived from dynamic factor analyses) described the variability of annual biomass anomalies underlying all zooplankton groups: a U-shaped trend with its minimum in the mid-2000s, and a declining trend from 2001 to 2011. Two latent trends also described the physical variables. The variability represented by these four latent trends clustered into two periods: 1996-2006, with generally declining zooplankton biomass and increasing salinities, and 2007-2018, with increasing zooplankton biomass and decreasing salinities. ARIMA modelling showed sea surface salinity at Entrance Island in the middle Strait of Georgia, the Pacific Decadal Oscillation, and the peak date of the spring phytoplankton bloom were significantly related to the two latent zooplankton trends. ARIMA models comparing zooplankton and physical variables with the marine survivals of four salmon populations which enter the Strait as juveniles (Chinook: Cowichan River, Puntledge River, Harrison River; Coho: Big Qualicum River) all included zooplankton groups consistent with known salmon prey; prominent among the physical variables were sea surface salinity and variables representing the flow from the Fraser River. These regressions explained (adjR2) 38 to 85% of the annual variability in marine survival rates of these salmon populations over the study time period. Although sea temperature was important in some relationships between zooplankton biomass and salmon marine survival, salinity was a more frequent and more important variable, consistent with its influence on the hydrodynamics of the Strait of Georgia system.


Asunto(s)
Biomasa , Zooplancton , Animales , Canadá , Océanos y Mares , Salinidad , Salmón , Temperatura
6.
Sci Rep ; 10(1): 17724, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33082360

RESUMEN

Pyrosomes are tunicates in the phylum Chordata, which also contains vertebrates. Their gigantic blooms play important ecological and biogeochemical roles in oceans. Pyrosoma, meaning "fire-body", derives from their brilliant bioluminescence. The biochemistry of this light production is unknown, but has been hypothesized to be bacterial in origin. We found that mixing coelenterazine-a eukaryote-specific luciferin-with Pyrosoma atlanticum homogenate produced light. To identify the bioluminescent machinery, we sequenced P. atlanticum transcriptomes and found a sequence match to a cnidarian luciferase (RLuc). We expressed this novel luciferase (PyroLuc) and, combined with coelenterazine, it produced light. A similar gene was recently predicted from a bioluminescent brittle star, indicating that RLuc-like luciferases may have evolved convergently from homologous dehalogenases across phyla (Cnidaria, Echinodermata, and Chordata). This report indicates that a widespread gene may be able to functionally converge, resulting in bioluminescence across animal phyla, and describes and characterizes the first putative chordate luciferase.


Asunto(s)
Luciferasas/genética , Urocordados , Animales , Evolución Biológica , Cordados , Biología Computacional , Evolución Molecular , Perfilación de la Expresión Génica , Imidazoles , Luminiscencia , Mediciones Luminiscentes , Modelos Moleculares , Filogenia , Pirazinas , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la Especie
7.
Environ Pollut ; 239: 215-222, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29655068

RESUMEN

We assessed the potential role played by two vital Northeastern Pacific Ocean forage fishes, the Pacific sand lance (Ammodytes personatus) and Pacific herring (Clupea pallasii), as conduits for the vertical transfer of microfibres in food webs. We quantified the number of microfibres found in the stomachs of 734 sand lance and 205 herring that had been captured by an abundant seabird, the rhinoceros auklet (Cerorhinca monocerata). Sampling took place on six widely-dispersed breeding colonies in British Columbia, Canada, and Washington State, USA, over one to eight years. The North Pacific Ocean is a global hotspot for pollution, yet few sand lance (1.5%) or herring (2.0%) had ingested microfibres. In addition, there was no systematic relationship between the prevalence of microplastics in the fish stomachs vs. in waters around three of our study colonies (measured in an earlier study). Sampling at a single site (Protection Island, WA) in a single year (2016) yielded most (sand lance) or all (herring) of the microfibres recovered over the 30 colony-years of sampling involved in this study, yet no microfibres had been recovered there, in either species, in the previous year. We thus found no evidence that sand lance and herring currently act as major food-web conduits for microfibres along British Columbia's outer coast, nor that the local at-sea density of plastic necessarily determines how much plastic enters marine food webs via zooplanktivores. Extensive urban development around the Salish Sea probably explains the elevated microfibre loads in fishes collected on Protection Island, but we cannot account for the between-year variation. Nonetheless, the existence of such marked interannual variation indicates the importance of measuring year-to-year variation in microfibre pollution both at sea and in marine biota.


Asunto(s)
Charadriiformes/metabolismo , Contaminación Ambiental/análisis , Cadena Alimentaria , Perciformes/metabolismo , Plásticos/análisis , Animales , Colombia Británica , Peces , Océano Pacífico , Washingtón
8.
Mar Pollut Bull ; 79(1-2): 94-9, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24398418

RESUMEN

We document the abundance, composition and distribution of microplastics in sub-surface seawaters of the northeastern Pacific Ocean and coastal British Columbia. Samples were acid-digested and plastics were characterized using light microscopy by type (fibres or fragments) and size (<100, 100-500, 500-100 and >1000 µm). Microplastics concentrations ranged from 8 to 9200 particles/m(3); lowest concentrations were in offshore Pacific waters, and increased 6, 12 and 27-fold in west coast Vancouver Island, Strait of Georgia, and Queen Charlotte Sound, respectively. Fibres accounted for ∼ 75% of particles on average, although nearshore samples had more fibre content than offshore (p<0.05). While elevated microplastic concentrations near urban areas are consistent with land-based sources, the high levels in Queen Charlotte Sound appeared to be the result of oceanographic conditions that trap and concentrate debris. This assessment of microplastics in the NE Pacific is of interest in light of the on-coming debris from the 2011 Tohoku Tsunami.


Asunto(s)
Monitoreo del Ambiente , Plásticos/análisis , Residuos/análisis , Contaminantes Químicos del Agua/análisis , Colombia Británica , Océano Pacífico , Agua de Mar/química , Tsunamis , Residuos/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA