Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Pathog ; 19(4): e1010942, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37027441

RESUMEN

During chronic cystic fibrosis (CF) infections, evolved Pseudomonas aeruginosa antibiotic resistance is linked to increased pulmonary exacerbations, decreased lung function, and hospitalizations. However, the virulence mechanisms underlying worse outcomes caused by antibiotic resistant infections are poorly understood. Here, we investigated evolved aztreonam resistant P. aeruginosa virulence mechanisms. Using a macrophage infection model combined with genomic and transcriptomic analyses, we show that a compensatory mutation in the rne gene, encoding RNase E, increased pyoverdine and pyochelin siderophore gene expression, causing macrophage ferroptosis and lysis. We show that iron-bound pyochelin was sufficient to cause macrophage ferroptosis and lysis, however, apo-pyochelin, iron-bound pyoverdine, or apo-pyoverdine were insufficient to kill macrophages. Macrophage killing could be eliminated by treatment with the iron mimetic gallium. RNase E variants were abundant in clinical isolates, and CF sputum gene expression data show that clinical isolates phenocopied RNase E variant functions during macrophage infection. Together these data show how P. aeruginosa RNase E variants can cause host damage via increased siderophore production and host cell ferroptosis but may also be targets for gallium precision therapy.


Asunto(s)
Hierro , Infecciones por Pseudomonas , Humanos , Hierro/metabolismo , Sideróforos/farmacología , Sideróforos/metabolismo , Pseudomonas aeruginosa/metabolismo , Virulencia , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/metabolismo
2.
J Biol Inorg Chem ; 27(1): 201-213, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35006347

RESUMEN

Tackling microbial resistance requires continuous efforts for the development of new molecules with novel mechanisms of action and potent antimicrobial activity. Our group has previously identified metal-based compounds, [Ag(1,10-phenanthroline-5,6-dione)2]ClO4 (Ag-phendione) and [Cu(1,10-phenanthroline-5,6-dione)3](ClO4)2.4H2O (Cu-phendione), with efficient antimicrobial action against multidrug-resistant species. Herein, we investigated the ability of Ag-phendione and Cu-phendione to bind with double-stranded DNA using a combination of in silico and in vitro approaches. Molecular docking revealed that both phendione derivatives can interact with the DNA by hydrogen bonding, hydrophobic and electrostatic interactions. Cu-phendione exhibited the highest binding affinity to either major (- 7.9 kcal/mol) or minor (- 7.2 kcal/mol) DNA grooves. In vitro competitive quenching assays involving duplex DNA with Hoechst 33258 or ethidium bromide demonstrated that Ag-phendione and Cu-phendione preferentially bind DNA in the minor grooves. The competitive ethidium bromide displacement technique revealed Cu-phendione has a higher binding affinity to DNA (Kapp = 2.55 × 106 M-1) than Ag-phendione (Kapp = 2.79 × 105 M-1) and phendione (Kapp = 1.33 × 105 M-1). Cu-phendione induced topoisomerase I-mediated DNA relaxation of supercoiled plasmid DNA. Moreover, Cu-phendione was able to induce oxidative DNA injuries with the addition of free radical scavengers inhibiting DNA damage. Ag-phendione and Cu-phendione avidly displaced propidium iodide bound to DNA in permeabilized Pseudomonas aeruginosa cells in a dose-dependent manner as judged by flow cytometry. The treatment of P. aeruginosa with bactericidal concentrations of Cu-phendione (15 µM) induced DNA fragmentation as visualized by either agarose gel or TUNEL assays. Altogether, these results highlight a possible novel DNA-targeted mechanism by which phendione-containing complexes, in part, elicit toxicity toward the multidrug-resistant pathogen P. aeruginosa.


Asunto(s)
Complejos de Coordinación , Pseudomonas aeruginosa , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cobre/química , Cobre/farmacología , ADN/química , Simulación del Acoplamiento Molecular , Fenantrolinas/química , Fenantrolinas/farmacología , Plata/farmacología
3.
Biometals ; 32(4): 671-682, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31230149

RESUMEN

Hydrazide ligand, (Z)-N'-(6-oxo-1,10-phenanthrolin-5(6H)-ylidene)isonicotinohydrazide, 1 forms from a 1:1 Schiff base condensation reaction between isoniazid (INH) and 1,10-phenanthroline-5,6-dione (phendione). Ag+ and Mn2+ complexes with 1:2 metal:ligand stoichiometry are prepared: [Ag(1)2]NO3, [Ag(1)2]BF4 and [Mn(1)2](NO3)2. Polymeric {[Ag(1)(NO3)]}n has 1:1 stoichiometry and forms upon infusion of CH2Cl2 into a DMSO solution of [Ag(1)2]NO3. {[Ag(1)(NO3)]}n was structurally characterized using X-ray crystallography. Metal-free 1 and its 1:2 complexes exhibit very good, broad-spectrum antimicrobial activity and are not excessively toxic to mammalian cells (A549 lineage).


Asunto(s)
Antiinfecciosos/química , Complejos de Coordinación/química , Isoniazida/química , Manganeso/química , Fenantrolinas/química , Plata/química , Células A549 , Antiinfecciosos/farmacología , Supervivencia Celular/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana
4.
Mem Inst Oswaldo Cruz ; 113(9): e180212, 2018 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-30066753

RESUMEN

Biofilm formation is the preferred mode of growth lifestyle for many microorganisms, including bacterial and fungal human pathogens. Biofilm is a strong and dynamic structure that confers a broad range of advantages to its members, such as adhesion/cohesion capabilities, mechanical properties, nutritional sources, metabolite exchange platform, cellular communication, protection and resistance to drugs (e.g., antimicrobials, antiseptics, and disinfectants), environmental stresses (e.g., dehydration and ultraviolet light), host immune attacks (e.g., antibodies, complement system, antimicrobial peptides, and phagocytes), and shear forces. Microbial biofilms cause problems in the hospital environment, generating high healthcare costs and prolonged patient stay, which can result in further secondary microbial infections and various health complications. Consequently, both public and private investments must be made to ensure better patient management, as well as to find novel therapeutic strategies to circumvent the resistance and resilience profiles arising from biofilm-associated microbial infections. In this work, we present a general overview of microbial biofilm formation and its relevance within the biomedical context.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Biopelículas/crecimiento & desarrollo , Hongos/fisiología , Microbiología Ambiental , Humanos
5.
Front Microbiol ; 10: 1791, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31456762

RESUMEN

Enteroaggregative Escherichia coli (EAEC) is an emerging pathotype responsible for acute and persistent diarrhea. It can be classified as typical and atypical strains, respectively, based on the presence or absence of the AggR regulon, suggesting a higher virulence for typical EAEC. This study aims to evaluate in the Galleria mellonella model if there are differences in the virulence profiles among clinical strains of typical and atypical EAEC, prototype strains EAEC C1096, 042 and its aggR mutant. The clinical EAEC strains (n = 20) were analyzed for the presence of 22 putative virulence factors of EAEC or extraintestinal E. coli by PCR, as well as phenotypic characteristics of virulence (enzymes, siderophore, and biofilm). The survival of the larvae was analyzed after inoculation of 104-107 CFU/larva; the monitoring of bacterial growth in vivo and hemocyte quantification was determined after inoculation of the prototype strains (105 CFU/larva) at different periods after infection. The strains of typical and atypical EAEC presented the same virulence profile for the larva, regardless of the amount or type of genes and phenotypic aspects of virulence analyzed. In addition, the EAEC 042 aggR mutant strain showed a significant reduction in the mortality of the inoculated larvae compared to the wild-type strain. In conclusion, the results obtained herein demonstrate that the virulence of EAEC seems to be related to the AggR regulon, but not exclusively, and atypical EAEC strains may be as virulent as typical ones in vivo in the G. mellonella model.

6.
Mem. Inst. Oswaldo Cruz ; 113(9): e180212, 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-955119

RESUMEN

Biofilm formation is the preferred mode of growth lifestyle for many microorganisms, including bacterial and fungal human pathogens. Biofilm is a strong and dynamic structure that confers a broad range of advantages to its members, such as adhesion/cohesion capabilities, mechanical properties, nutritional sources, metabolite exchange platform, cellular communication, protection and resistance to drugs (e.g., antimicrobials, antiseptics, and disinfectants), environmental stresses (e.g., dehydration and ultraviolet light), host immune attacks (e.g., antibodies, complement system, antimicrobial peptides, and phagocytes), and shear forces. Microbial biofilms cause problems in the hospital environment, generating high healthcare costs and prolonged patient stay, which can result in further secondary microbial infections and various health complications. Consequently, both public and private investments must be made to ensure better patient management, as well as to find novel therapeutic strategies to circumvent the resistance and resilience profiles arising from biofilm-associated microbial infections. In this work, we present a general overview of microbial biofilm formation and its relevance within the biomedical context.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Fenómenos Fisiológicos Bacterianos , Hongos/fisiología , Microbiología Ambiental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA