Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EJNMMI Res ; 9(1): 45, 2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31115711

RESUMEN

Conjugation or fusion to AlbudAbs™ (albumin-binding domain antibodies) is a novel approach to extend the half-life and alter the tissue distribution of biological and small molecule therapeutics. To understand extravasation kinetics and extravascular organ concentrations of AlbudAbs in humans, we studied tissue distribution and elimination of a non-conjugated 89Zr-labeled AlbudAb in healthy volunteers using positron emission tomography/computed tomography (PET/CT). METHODS: A non-conjugated AlbudAb (GSK3128349) was radiolabeled with 89Zr and a single 1 mg (~ 15 MBq) dose intravenously administered to eight healthy males. 89Zr-AlbudAb tissue distribution was followed for up to 7 days with four whole-body PET/CT scans. 89Zr-AlbudAb tissue concentrations were quantified in organs of therapeutic significance, measuring standardized uptake value and tissue/plasma ratios. Plasma pharmacokinetics were assessed by gamma counting and LC-MS/MS of blood samples. RESULTS: 89Zr-AlbudAb administration and PET/CT procedures were well tolerated, with no drug-related immunogenicity or adverse events. 89Zr-AlbudAb rapidly distributed throughout the vasculature, with tissue/plasma ratios in the liver, lungs, and heart relatively stable over 7 days post-dose, ranging between 0.1 and 0.5. The brain tissue/plasma ratio of 0.025 suggested minimal AlbudAb blood-brain barrier penetration. Slowly increasing ratios in muscle, testis, pancreas, and spleen reflected either slow AlbudAb penetration and/or 89Zr residualization in these organs. Across all tissues evaluated, the kidney tissue/plasma ratio was highest (0.5-1.5 range) with highest concentration in the renal cortex. The terminal half-life of the 89Zr-AlbudAb was 18 days. CONCLUSION: Evaluating the biodistribution of 89Zr-AlbudAb in healthy volunteers using a low radioactivity dose was successful (total subject exposure ~ 10 mSv). Results indicated rapid formation of reversible, but stable, complexes between AlbudAb and albumin upon dosing. 89Zr-AlbudAb demonstrated albumin-like pharmacokinetics, including limited renal elimination. This novel organ-specific distribution data for AlbudAbs in humans will facilitate a better selection of drug targets to prosecute using the AlbudAb platform and significantly contribute to modeling work optimizing dosing of therapeutic AlbudAbs in the clinic.

2.
EMBO J ; 24(17): 3104-16, 2005 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-16096642

RESUMEN

D cyclins (D1, D2 and D3) and their catalytic subunits (cyclin-dependent kinases cdk4 and cdk6) have a facilitating, but nonessential, role in cell cycle entry. Tissue-specific functions for D-type cyclins and cdks have been reported; however, the biochemical properties of these kinases are indistinguishable. We report that an F box protein, Fbxo7, interacted with cellular and viral D cyclins and distinguished among the cdks that bind D-type cyclins, specifically binding cdk6, in vitro and in vivo. Fbxo7 specifically regulated D cyclin/cdk6 complexes: Fbxo7 knockdown decreased cdk6 association with cyclin and its overexpression increased D cyclin/cdk6 activity and E2F activity. Fbxo7 interacted with p27, but its enhancement of cyclin D/cdk6 activity was p21/p27 independent. Fbxo7 overexpression transformed murine fibroblasts, rendering them tumorigenic in athymic nude mice. Transformed phenotypes were dependent on cdk6, as knockdown of cdk6 reversed them. Fbxo7 was highly expressed in epithelial tumors, but not in normal tissues, suggesting that it may have a proto-oncogenic role in human cancers.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Proteínas F-Box/metabolismo , Transporte Activo de Núcleo Celular , Adenocarcinoma/metabolismo , Animales , Carcinoma de Células Escamosas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Neoplasias Colorrectales/metabolismo , Ciclina D , Quinasa 6 Dependiente de la Ciclina , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Quinasas Ciclina-Dependientes/genética , Ciclinas/genética , Citoplasma/metabolismo , Proteínas F-Box/genética , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Unión Proteica , ARN Interferente Pequeño/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
3.
Biochem Biophys Res Commun ; 305(3): 529-33, 2003 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-12763025

RESUMEN

The characterization of the enzymes responsible for amyloid beta-peptide (Abeta) production is considered to be a primary goal towards the development of future therapeutics for the treatment of Alzheimer's disease. Inhibitors of gamma-secretase activity were critical in demonstrating that the presenilins (PSs) likely comprised at least part of the active site of the gamma-secretase enzyme complex, with two highly conserved membrane aspartates presumably acting as catalytic residues. However, whether or not these aspartates are actually the catalytic residues of the enzyme complex or are merely essential for normal PS function and/or maturation is still unknown. In this paper, we report the development of reactive inhibitors of gamma-secretase activity that are functionally irreversible. Since such inhibitors have been shown to bind catalytic residues in other aspartyl proteases (e.g., HIV protease), they might be used to determine if the transmembrane aspartates of PSs are involved directly in substrate cleavage.


Asunto(s)
Endopeptidasas/metabolismo , Inhibidores Enzimáticos/farmacología , Oligopéptidos/farmacología , Secretasas de la Proteína Precursora del Amiloide , Animales , Ácido Aspártico Endopeptidasas , Células CHO , Cricetinae , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Compuestos Epoxi/farmacología , Humanos , Cinética , Proteínas de la Membrana/metabolismo , Oligopéptidos/química , Receptores Notch , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA