Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 82(20): 3769-3780.e5, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36182691

RESUMEN

Complex genomes show intricate organization in three-dimensional (3D) nuclear space. Current models posit that cohesin extrudes loops to form self-interacting domains delimited by the DNA binding protein CTCF. Here, we describe and quantitatively characterize cohesin-propelled, jet-like chromatin contacts as landmarks of loop extrusion in quiescent mammalian lymphocytes. Experimental observations and polymer simulations indicate that narrow origins of loop extrusion favor jet formation. Unless constrained by CTCF, jets propagate symmetrically for 1-2 Mb, providing an estimate for the range of in vivo loop extrusion. Asymmetric CTCF binding deflects the angle of jet propagation as experimental evidence that cohesin-mediated loop extrusion can switch from bi- to unidirectional and is controlled independently in both directions. These data offer new insights into the physiological behavior of in vivo cohesin-mediated loop extrusion and further our understanding of the principles that underlie genome organization.


Asunto(s)
Cromatina , Proteínas Cromosómicas no Histona , Animales , Cromatina/genética , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Polímeros/metabolismo , Mamíferos/metabolismo , Cohesinas
2.
FASEB J ; 37(8): e23103, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37489832

RESUMEN

Receptors for estrogen and progesterone frequently interact, via Cohesin/CTCF loop extrusion, at enhancers distal from regulated genes. Loss-of-function CTCF mutation in >20% of human endometrial tumors indicates its importance in uterine homeostasis. To better understand how CTCF-mediated enhancer-gene interactions impact endometrial development and function, the Ctcf gene was selectively deleted in female reproductive tissues of mice. Prepubertal Ctcfd/d uterine tissue exhibited a marked reduction in the number of uterine glands compared to those without Ctcf deletion (Ctcff/f mice). Post-pubertal Ctcfd/d uteri were hypoplastic with significant reduction in both the amount of the endometrial stroma and number of glands. Transcriptional profiling revealed increased expression of stem cell molecules Lif, EOMES, and Lgr5, and enhanced inflammation pathways following Ctcf deletion. Analysis of the response of the uterus to steroid hormone stimulation showed that CTCF deletion affects a subset of progesterone-responsive genes. This finding indicates (1) Progesterone-mediated signaling remains functional following Ctcf deletion and (2) certain progesterone-regulated genes are sensitive to Ctcf deletion, suggesting they depend on gene-enhancer interactions that require CTCF. The progesterone-responsive genes altered by CTCF ablation included Ihh, Fst, and Errfi1. CTCF-dependent progesterone-responsive uterine genes enhance critical processes including anti-tumorigenesis, which is relevant to the known effectiveness of progesterone in inhibiting progression of early-stage endometrial tumors. Overall, our findings reveal that uterine Ctcf plays a key role in progesterone-dependent expression of uterine genes underlying optimal post-pubertal uterine development.


Asunto(s)
Cromatina , Neoplasias Endometriales , Humanos , Femenino , Animales , Ratones , Progesterona , Útero , Endometrio
4.
Nature ; 544(7651): 503-507, 2017 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-28424523

RESUMEN

Mammalian genomes are spatially organized by CCCTC-binding factor (CTCF) and cohesin into chromatin loops and topologically associated domains, which have important roles in gene regulation and recombination. By binding to specific sequences, CTCF defines contact points for cohesin-mediated long-range chromosomal cis-interactions. Cohesin is also present at these sites, but has been proposed to be loaded onto DNA elsewhere and to extrude chromatin loops until it encounters CTCF bound to DNA. How cohesin is recruited to CTCF sites, according to this or other models, is unknown. Here we show that the distribution of cohesin in the mouse genome depends on transcription, CTCF and the cohesin release factor Wings apart-like (Wapl). In CTCF-depleted fibroblasts, cohesin cannot be properly recruited to CTCF sites but instead accumulates at transcription start sites of active genes, where the cohesin-loading complex is located. In the absence of both CTCF and Wapl, cohesin accumulates in up to 70 kilobase-long regions at 3'-ends of active genes, in particular if these converge on each other. Changing gene expression modulates the position of these 'cohesin islands'. These findings indicate that transcription can relocate mammalian cohesin over long distances on DNA, as previously reported for yeast cohesin, that this translocation contributes to positioning cohesin at CTCF sites, and that active genes can be freed from cohesin either by transcription-mediated translocation or by Wapl-mediated release.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas de los Mamíferos/metabolismo , Genoma/genética , Proteínas/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética/genética , Animales , Sitios de Unión , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/genética , Células Cultivadas , Proteoglicanos Tipo Condroitín Sulfato/deficiencia , Proteoglicanos Tipo Condroitín Sulfato/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/deficiencia , Proteínas Cromosómicas no Histona/genética , Cromosomas de los Mamíferos/genética , ADN/genética , ADN/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Masculino , Ratones , Transporte de Proteínas , Proteínas/genética , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Sitio de Iniciación de la Transcripción , Cohesinas
5.
Mol Cell ; 54(1): 56-66, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24613343

RESUMEN

Interchromosomal associations can regulate gene expression, but little is known about the molecular basis of such associations. In response to antigen stimulation, naive T cells can differentiate into Th1, Th2, and Th17 cells expressing IFN-γ, IL-4, and IL-17, respectively. We previously reported that in naive T cells, the IFN-γ locus is associated with the Th2 cytokine locus. Here we show that the Th2 locus additionally associates with the IL-17 locus. This association requires a DNase I hypersensitive region (RHS6) at the Th2 locus. RHS6 and the IL-17 promoter both bear Oct-1 binding sites. Deletion of either of these sites or Oct-1 gene impairs the association. Oct-1 and CTCF bind their cognate sites cooperatively, and CTCF deficiency similarly impairs the association. Finally, defects in the association lead to enhanced IL-17 induction. Collectively, our data indicate Th17 lineage differentiation is restrained by the Th2 locus via interchromosomal associations organized by Oct-1 and CTCF.


Asunto(s)
Cromosomas de los Mamíferos , Interleucina-17/metabolismo , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Represoras/metabolismo , Células Th17/metabolismo , Células Th2/metabolismo , Animales , Sitios de Unión , Factor de Unión a CCCTC , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Desoxirribonucleasa I/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Sitios Genéticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interleucina-17/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Factor 1 de Transcripción de Unión a Octámeros/deficiencia , Factor 1 de Transcripción de Unión a Octámeros/genética , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Eliminación de Secuencia , Células Th17/inmunología , Células Th2/inmunología , Factores de Tiempo
6.
Immunity ; 35(4): 501-13, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-22035845

RESUMEN

Regulation of immunoglobulin (Ig) V(D)J gene rearrangement is dependent on higher-order chromatin organization. Here, we studied the in vivo function of the DNA-binding zinc-finger protein CTCF, which regulates interactions between enhancers and promoters. By conditional deletion of the Ctcf gene in the B cell lineage, we demonstrate that loss of CTCF allowed Ig heavy chain recombination, but pre-B cell proliferation and differentiation was severely impaired. In the absence of CTCF, the Igκ light chain locus showed increased proximal and reduced distal Vκ usage. This was associated with enhanced proximal Vκ and reduced Jκ germline transcription. Chromosome conformation capture experiments demonstrated that CTCF limits interactions of the Igκ enhancers with the proximal V(κ) gene region and prevents inappropriate interactions between these strong enhancers and elements outside the Igκ locus. Thus, although Ig gene recombination can occur in the absence of CTCF, it is a critical factor determining Vκ segment choice for recombination.


Asunto(s)
Cadenas kappa de Inmunoglobulina/genética , Recombinación Genética , Proteínas Represoras/genética , Animales , Linfocitos B/citología , Linfocitos B/inmunología , Factor de Unión a CCCTC , Diferenciación Celular , Proliferación Celular , Sitios Genéticos , Cadenas kappa de Inmunoglobulina/inmunología , Ratones , Receptores de Antígenos de Linfocitos B/inmunología , Proteínas Represoras/inmunología , Transcripción Genética
7.
Nucleic Acids Res ; 46(14): 7097-7107, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29860503

RESUMEN

The two paralogous zinc finger factors CTCF and CTCFL differ in expression such that CTCF is ubiquitously expressed, whereas CTCFL is found during spermatogenesis and in some cancer types in addition to other cell types. Both factors share the highly conserved DNA binding domain and are bound to DNA sequences with an identical consensus. In contrast, both factors differ substantially in the number of bound sites in the genome. Here, we addressed the molecular features for this binding specificity. In contrast to CTCF we found CTCFL highly enriched at 'open' chromatin marked by H3K27 acetylation, H3K4 di- and trimethylation, H3K79 dimethylation and H3K9 acetylation plus the histone variant H2A.Z. CTCFL is enriched at transcriptional start sites and regions bound by transcription factors. Consequently, genes deregulated by CTCFL are highly cell specific. In addition to a chromatin-driven choice of binding sites, we determined nucleotide positions critical for DNA binding by CTCFL, but not by CTCF.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Línea Celular , ADN/química , Humanos , Células K562 , Ratones , Células 3T3 NIH
8.
PLoS Genet ; 13(8): e1006985, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28846746

RESUMEN

Cardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such program from development to maturation are largely unknown. Here, we show that the genome organizer CTCF is essential for cardiogenesis and that it mediates genomic interactions to coordinate cardiomyocyte differentiation and maturation in the developing heart. Inactivation of Ctcf in cardiac progenitor cells and their derivatives in vivo during development caused severe cardiac defects and death at embryonic day 12.5. Genome wide expression analysis in Ctcf mutant hearts revealed that genes controlling mitochondrial function and protein production, required for cardiomyocyte maturation, were upregulated. However, mitochondria from mutant cardiomyocytes do not mature properly. In contrast, multiple development regulatory genes near predicted heart enhancers, including genes in the IrxA cluster, were downregulated in Ctcf mutants, suggesting that CTCF promotes cardiomyocyte differentiation by facilitating enhancer-promoter interactions. Accordingly, loss of CTCF disrupts gene expression and chromatin interactions as shown by chromatin conformation capture followed by deep sequencing. Furthermore, CRISPR-mediated deletion of an intergenic CTCF site within the IrxA cluster alters gene expression in the developing heart. Thus, CTCF mediates local regulatory interactions to coordinate transcriptional programs controlling transitions in morphology and function during heart development.


Asunto(s)
Cromatina/genética , Desarrollo Embrionario/genética , Ventrículos Cardíacos/crecimiento & desarrollo , Corazón/crecimiento & desarrollo , Proteínas Represoras/genética , Animales , Factor de Unión a CCCTC , Diferenciación Celular/genética , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Ventrículos Cardíacos/embriología , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Organogénesis/genética , Regiones Promotoras Genéticas , Unión Proteica , Activación Transcripcional/genética
9.
J Neurosci ; 38(22): 5042-5052, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29712785

RESUMEN

The molecular mechanism of long-term memory has been extensively studied in the context of the hippocampus-dependent recent memory examined within several days. However, months-old remote memory maintained in the cortex for long-term has not been investigated much at the molecular level yet. Various epigenetic mechanisms are known to be important for long-term memory, but how the 3D chromatin architecture and its regulator molecules contribute to neuronal plasticity and systems consolidation is still largely unknown. CCCTC-binding factor (CTCF) is an 11-zinc finger protein well known for its role as a genome architecture molecule. Male conditional knock-out mice in which CTCF is lost in excitatory neurons during adulthood showed normal recent memory in the contextual fear conditioning and spatial water maze tasks. However, they showed remarkable impairments in remote memory in both tasks. Underlying the remote memory-specific phenotypes, we observed that female CTCF conditional knock-out mice exhibit disrupted cortical LTP, but not hippocampal LTP. Similarly, we observed that CTCF deletion in inhibitory neurons caused partial impairment of remote memory. Through RNA sequencing, we observed that CTCF knockdown in cortical neuron culture caused altered expression of genes that are highly involved in cell adhesion, synaptic plasticity, and memory. These results suggest that remote memory storage in the cortex requires CTCF-mediated gene regulation in neurons, whereas recent memory formation in the hippocampus does not.SIGNIFICANCE STATEMENT CCCTC-binding factor (CTCF) is a well-known 3D genome architectural protein that regulates gene expression. Here, we use two different CTCF conditional knock-out mouse lines and reveal, for the first time, that CTCF is critically involved in the regulation of remote memory. We also show that CTCF is necessary for appropriate expression of genes, many of which we found to be involved in the learning- and memory-related processes. Our study provides behavioral and physiological evidence for the involvement of CTCF-mediated gene regulation in the remote long-term memory and elucidates our understanding of systems consolidation mechanisms.


Asunto(s)
Factor de Unión a CCCTC/fisiología , Corteza Cerebral/fisiología , Memoria/fisiología , Plasticidad Neuronal/fisiología , Animales , Adhesión Celular/fisiología , Condicionamiento Clásico , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Miedo , Regulación de la Expresión Génica , Potenciación a Largo Plazo/fisiología , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Noqueados , Percepción Espacial/fisiología
10.
J Biol Chem ; 293(22): 8449-8461, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29610276

RESUMEN

The CCCTC-binding factor (CTCF) is a versatile transcriptional regulator required for embryogenesis, but its function in vascular development or in diseases with a vascular component is poorly understood. Here, we found that endothelial Ctcf is essential for mouse vascular development and limits accumulation of reactive oxygen species (ROS). Conditional knockout of Ctcf in endothelial progenitors and their descendants affected embryonic growth, and caused lethality at embryonic day 10.5 because of defective yolk sac and placental vascular development. Analysis of global gene expression revealed Frataxin (Fxn), the gene mutated in Friedreich's ataxia (FRDA), as the most strongly down-regulated gene in Ctcf-deficient placental endothelial cells. Moreover, in vitro reporter assays showed that Ctcf activates the Fxn promoter in endothelial cells. ROS are known to accumulate in the endothelium of FRDA patients. Importantly, Ctcf deficiency induced ROS-mediated DNA damage in endothelial cells in vitro, and in placental endothelium in vivo Taken together, our findings indicate that Ctcf promotes vascular development and limits oxidative stress in endothelial cells. These results reveal a function for Ctcf in vascular development, and suggest a potential mechanism for endothelial dysfunction in FRDA.


Asunto(s)
Factor de Unión a CCCTC/fisiología , Embrión de Mamíferos/patología , Endotelio Vascular/patología , Ataxia de Friedreich/patología , Regulación de la Expresión Génica , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Animales , Células Cultivadas , Embrión de Mamíferos/metabolismo , Endotelio Vascular/metabolismo , Femenino , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Masculino , Ratones , Ratones Noqueados , Frataxina
11.
Circulation ; 136(17): 1613-1625, 2017 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-28802249

RESUMEN

BACKGROUND: Cardiovascular disease is associated with epigenomic changes in the heart; however, the endogenous structure of cardiac myocyte chromatin has never been determined. METHODS: To investigate the mechanisms of epigenomic function in the heart, genome-wide chromatin conformation capture (Hi-C) and DNA sequencing were performed in adult cardiac myocytes following development of pressure overload-induced hypertrophy. Mice with cardiac-specific deletion of CTCF (a ubiquitous chromatin structural protein) were generated to explore the role of this protein in chromatin structure and cardiac phenotype. Transcriptome analyses by RNA-seq were conducted as a functional readout of the epigenomic structural changes. RESULTS: Depletion of CTCF was sufficient to induce heart failure in mice, and human patients with heart failure receiving mechanical unloading via left ventricular assist devices show increased CTCF abundance. Chromatin structural analyses revealed interactions within the cardiac myocyte genome at 5-kb resolution, enabling examination of intra- and interchromosomal events, and providing a resource for future cardiac epigenomic investigations. Pressure overload or CTCF depletion selectively altered boundary strength between topologically associating domains and A/B compartmentalization, measurements of genome accessibility. Heart failure involved decreased stability of chromatin interactions around disease-causing genes. In addition, pressure overload or CTCF depletion remodeled long-range interactions of cardiac enhancers, resulting in a significant decrease in local chromatin interactions around these functional elements. CONCLUSIONS: These findings provide a high-resolution chromatin architecture resource for cardiac epigenomic investigations and demonstrate that global structural remodeling of chromatin underpins heart failure. The newly identified principles of endogenous chromatin structure have key implications for epigenetic therapy.


Asunto(s)
Cardiomegalia/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Epigénesis Genética , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Cromatina/genética , Cromatina/patología , Estudio de Asociación del Genoma Completo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Ratones , Ratones Noqueados , Miocitos Cardíacos/patología
12.
Hum Mol Genet ; 25(3): 571-83, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26647307

RESUMEN

Megacystis Microcolon Intestinal Hypoperistalsis Syndrome (MMIHS) is a rare congenital disorder, in which heterozygous missense variants in the Enteric Smooth Muscle actin γ-2 (ACTG2) gene have been recently identified. To investigate the mechanism by which ACTG2 variants lead to MMIHS, we screened a cohort of eleven MMIHS patients, eight sporadic and three familial cases, and performed immunohistochemistry, molecular modeling and molecular dynamics (MD) simulations, and in vitro assays. In all sporadic cases, a heterozygous missense variant in ACTG2 was identified. ACTG2 expression was detected in all intestinal layers where smooth muscle cells are present in different stages of human development. No histopathological abnormalities were found in the patients. Using molecular modeling and MD simulations, we predicted that ACTG2 variants lead to significant changes to the protein function. This was confirmed by in vitro studies, which showed that the identified variants not only impair ACTG2 polymerization, but also contribute to reduced cell contractility. Taken together, our results confirm the involvement of ACTG2 in sporadic MMIHS, and bring new insights to MMIHS pathogenesis.


Asunto(s)
Anomalías Múltiples/genética , Actinas/genética , Colon/anomalías , Mucosa Intestinal/metabolismo , Seudoobstrucción Intestinal/genética , Contracción Muscular/genética , Músculo Liso/metabolismo , Mutación Missense , Vejiga Urinaria/anomalías , Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Actinas/química , Actinas/metabolismo , Colon/metabolismo , Colon/patología , Resultado Fatal , Femenino , Expresión Génica , Heterocigoto , Humanos , Recién Nacido , Seudoobstrucción Intestinal/metabolismo , Seudoobstrucción Intestinal/patología , Intestinos/patología , Masculino , Simulación de Dinámica Molecular , Músculo Liso/patología , Linaje , Multimerización de Proteína , Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología , Adulto Joven
13.
EMBO J ; 32(9): 1293-306, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23572079

RESUMEN

MAP1B, a structural microtubule (MT)-associated protein highly expressed in developing neurons, plays a key role in neurite and axon extension. However, not all molecular mechanisms by which MAP1B controls MT dynamics during these processes have been revealed. Here, we show that MAP1B interacts directly with EB1 and EB3 (EBs), two core 'microtubule plus-end tracking proteins' (+TIPs), and sequesters them in the cytosol of developing neuronal cells. MAP1B overexpression reduces EBs binding to plus-ends, whereas MAP1B downregulation increases binding of EBs to MTs. These alterations in EBs behaviour lead to changes in MT dynamics, in particular overstabilization and looping, in growth cones of MAP1B-deficient neurons. This contributes to growth cone remodelling and a delay in axon outgrowth. Together, our findings define a new and crucial role of MAP1B as a direct regulator of EBs function and MT dynamics during neurite and axon extension. Our data provide a new layer of MT regulation: a classical MAP, which binds to the MT lattice and not to the end, controls effective concentration of core +TIPs thereby regulating MTs at their plus-ends.


Asunto(s)
Citosol/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo , Animales , Células Cultivadas , Células HEK293 , Humanos , Cinética , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Modelos Biológicos , Neurogénesis/genética , Neurogénesis/fisiología , Neuronas/fisiología , Neuronas/ultraestructura , Unión Proteica/fisiología , Multimerización de Proteína/genética , Transporte de Proteínas/genética
14.
J Nanosci Nanotechnol ; 17(2): 926-31, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29671478

RESUMEN

In this study, Single walled carbon nanotube (SWNT)-streptavidin complexes were used to capture and purify biotinylated proteins, including bio-GFP and bio-DBS using a pull-down method. The purification conditions were systematically studied, including surface blocking of SWNT using chicken egg albumin (CEA), the ratio of SWNT-streptavidin complexes to the cell lysate, as well as the centrifugation speed. Optimization of the protein purification using SWNT-streptavidin complexes shows the possibility of carbon nanotubes as a promising candidate for protein purification applications. The SWNT-streptavidin could be used as a scaffold to analyze protein structure directly by cryo-transmission electron microscopy, which provides better understanding in protein­protein interactions and biological processes.


Asunto(s)
Biotina/química , Nanotubos de Carbono/química , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Estreptavidina/química , Albúminas/química , Albúminas/aislamiento & purificación , Albúminas/metabolismo , Animales , Biotina/metabolismo , Biotinilación , Pollos , Proteínas Recombinantes/metabolismo , Estreptavidina/metabolismo
15.
Nature ; 464(7285): 116-20, 2010 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-20154729

RESUMEN

Haematopoietic stem cells (HSCs), responsible for blood production in the adult mouse, are first detected in the dorsal aorta starting at embryonic day 10.5 (E10.5). Immunohistological analysis of fixed embryo sections has revealed the presence of haematopoietic cell clusters attached to the aortic endothelium where HSCs might localize. The origin of HSCs has long been controversial and several candidates of the direct HSC precursors have been proposed (for review see ref. 7), including a specialized endothelial cell population with a haemogenic potential. Such cells have been described both in vitro in the embryonic stem cell (ESC) culture system and retrospectively in vivo by endothelial lineage tracing and conditional deletion experiments. Whether the transition from haemogenic endothelium to HSC actually occurs in the mouse embryonic aorta is still unclear and requires direct and real-time in vivo observation. To address this issue we used time-lapse confocal imaging and a new dissection procedure to visualize the deeply located aorta. Here we show the dynamic de novo emergence of phenotypically defined HSCs (Sca1(+), c-kit(+), CD41(+)) directly from ventral aortic haemogenic endothelial cells.


Asunto(s)
Aorta/citología , Diferenciación Celular , Linaje de la Célula , Endotelio Vascular/citología , Células Madre Hematopoyéticas/citología , Animales , Aorta/embriología , Aorta/cirugía , Subunidad alfa 2 del Factor de Unión al Sitio Principal/deficiencia , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Disección , Embrión de Mamíferos/citología , Células Endoteliales/citología , Endotelio Vascular/embriología , Femenino , Masculino , Ratones , Microscopía Confocal , Fenotipo , Embarazo
16.
Nucleic Acids Res ; 42(19): 11941-51, 2014 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-25294833

RESUMEN

Insulators functionally separate active chromatin domains from inactive ones. The insulator factor, CTCF, has been found to bind to boundaries and to mediate insulator function. CTCF binding sites are depleted for the histone modification H3K27me3 and are enriched for the histone variant H3.3. In order to determine whether demethylation of H3K27me3 and H3.3 incorporation are a requirement for CTCF binding at domain boundaries or whether CTCF causes these changes, we made use of the LacI DNA binding domain to control CTCF binding by the Lac inducer IPTG. Here we show that, in contrast to the related factor CTCFL, the N-terminus plus zinc finger domain of CTCF is sufficient to open compact chromatin rapidly. This is preceded by incorporation of the histone variant H3.3, which thereby removes the H3K27me3 mark. This demonstrates the causal role for CTCF in generating the chromatin features found at insulators. Thereby, spreading of a histone modification from one domain through the insulator into the neighbouring domain is inhibited.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Elementos Aisladores , Proteínas Represoras/metabolismo , Factor de Unión a CCCTC , Línea Celular , Cromatina/química , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Metilación , Proteínas Represoras/química , Proteínas Represoras/fisiología , Dedos de Zinc
17.
J Neurosci ; 34(8): 2860-70, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24553927

RESUMEN

An increasing number of proteins involved in genome organization have been implicated in neurodevelopmental disorders, highlighting the importance of chromatin architecture in the developing CNS. The CCCTC-binding factor (CTCF) is a zinc finger DNA binding protein involved in higher-order chromatin organization, and mutations in the human CTCF gene cause an intellectual disability syndrome associated with microcephaly. However, information on CTCF function in vivo in the developing brain is lacking. To address this gap, we conditionally inactivated the Ctcf gene at early stages of mouse brain development. Cre-mediated Ctcf deletion in the telencephalon and anterior retina at embryonic day 8.5 triggered upregulation of the p53 effector PUMA (p53 upregulated modulator of apoptosis), resulting in massive apoptosis and profound ablation of telencephalic structures. Inactivation of Ctcf several days later at E11 also resulted in PUMA upregulation and increased apoptotic cell death, and the Ctcf-null forebrain was hypocellular and disorganized at birth. Although deletion of both Ctcf and Puma in the embryonic brain efficiently rescued Ctcf-null progenitor cell apoptosis, it failed to improve neonatal hypocellularity due to decreased proliferative capacity of rescued apical and outer radial glia progenitor cells. This was exacerbated by an independent effect of CTCF loss that resulted in depletion of the progenitor pool due to premature neurogenesis earlier in development. Our findings demonstrate that CTCF activities are required for two distinct events in early cortex formation: first, to correctly regulate the balance between neuroprogenitor cell proliferation and differentiation, and second, for the survival of neuroprogenitor cells, providing new clues regarding the contributions of CTCF in microcephaly/intellectual disability syndrome pathologies.


Asunto(s)
Diferenciación Celular/genética , Diferenciación Celular/fisiología , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Células-Madre Neurales/fisiología , Proteínas Represoras/fisiología , Animales , Antimetabolitos , Apoptosis/genética , Apoptosis/fisiología , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/fisiología , Encéfalo/anomalías , Bromodesoxiuridina , Factor de Unión a CCCTC , Muerte Celular/fisiología , Inmunoprecipitación de Cromatina , Exones/genética , Femenino , Técnica del Anticuerpo Fluorescente , Genes p53/genética , Genes p53/fisiología , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones Noqueados , Nestina/genética , Nestina/fisiología , Embarazo , Cultivo Primario de Células , Reacción en Cadena en Tiempo Real de la Polimerasa , Retina/citología , Retina/fisiología , Telencéfalo/citología , Telencéfalo/fisiología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología
18.
J Biol Chem ; 289(44): 30857-30867, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25231989

RESUMEN

The postsynaptic apparatus of the neuromuscular junction (NMJ) traps and anchors acetylcholine receptors (AChRs) at high density at the synapse. We have previously shown that microtubule (MT) capture by CLASP2, a MT plus-end-tracking protein (+TIP), increases the size and receptor density of AChR clusters at the NMJ through the delivery of AChRs and that this is regulated by a pathway involving neuronal agrin and several postsynaptic kinases, including GSK3. Phosphorylation by GSK3 has been shown to cause CLASP2 dissociation from MT ends, and nine potential phosphorylation sites for GSK3 have been mapped on CLASP2. How CLASP2 phosphorylation regulates MT capture at the NMJ and how this controls the size of AChR clusters are not yet understood. To examine this, we used myotubes cultured on agrin patches that induce AChR clustering in a two-dimensional manner. We show that expression of a CLASP2 mutant, in which the nine GSK3 target serines are mutated to alanine (CLASP2-9XS/9XA) and are resistant to GSK3ß-dependent phosphorylation, promotes MT capture at clusters and increases AChR cluster size, compared with myotubes that express similar levels of wild type CLASP2 or that are noninfected. Conversely, myotubes expressing a phosphomimetic form of CLASP2 (CLASP2-8XS/D) show enrichment of immobile mutant CLASP2 in clusters, but MT capture and AChR cluster size are reduced. Taken together, our data suggest that both GSK3ß-dependent phosphorylation and the level of CLASP2 play a role in the maintenance of AChR cluster size through the regulated capture and release of MT plus-ends.


Asunto(s)
Glucógeno Sintasa Quinasa 3/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Procesamiento Proteico-Postraduccional , Receptores Colinérgicos/metabolismo , Agrina/fisiología , Animales , Células COS , Chlorocebus aethiops , Glucógeno Sintasa Quinasa 3 beta , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Microtúbulos/ultraestructura , Fibras Musculares Esqueléticas/metabolismo , Fosforilación , Cultivo Primario de Células , Transporte de Proteínas
19.
J Cell Sci ; 126(Pt 20): 4589-601, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23943871

RESUMEN

The microtubule (MT) cytoskeleton is essential for many cellular processes, including cell polarity and migration. Cortical platforms, formed by a subset of MT plus-end-tracking proteins, such as CLASP2, and non-MT binding proteins such as LL5ß, attach distal ends of MTs to the cell cortex. However, the mechanisms involved in organizing these platforms have not yet been described in detail. Here we show that 4.1R, a FERM-domain-containing protein, interacts and colocalizes with cortical CLASP2 and is required for the correct number and dynamics of CLASP2 cortical platforms. Protein 4.1R also controls binding of CLASP2 to MTs at the cell edge by locally altering GSK3 activity. Furthermore, in 4.1R-knockdown cells MT plus-ends were maintained for longer in the vicinity of cell edges, but instead of being tethered to the cell cortex, MTs continued to grow, bending at cell margins and losing their radial distribution. Our results suggest a previously unidentified role for the scaffolding protein 4.1R in locally controlling CLASP2 behavior, CLASP2 cortical platform turnover and GSK3 activity, enabling correct MT organization and dynamics essential for cell polarity.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Proteínas Asociadas a Microtúbulos/genética , Unión Proteica , Estructura Terciaria de Proteína
20.
Proc Natl Acad Sci U S A ; 109(50): E3493-502, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23169622

RESUMEN

Antigen receptor locus V(D)J recombination requires interactions between widely separated variable (V), diversity (D), and joining (J) gene segments, but the mechanisms that generate these interactions are not well understood. Here we assessed mechanisms that direct developmental stage-specific long-distance interactions at the Tcra/Tcrd locus. The Tcra/Tcrd locus recombines Tcrd gene segments in CD4(-)CD8(-) double-negative thymocytes and Tcra gene segments in CD4(+)CD8(+) double-positive thymocytes. Initial V(α)-to-J(α) recombination occurs within a chromosomal domain that displays a contracted conformation in both thymocyte subsets. We used chromosome conformation capture to demonstrate that the Tcra enhancer (E(α)) interacts directly with V(α) and J(α) gene segments distributed across this domain, specifically in double-positive thymocytes. Moreover, E(α) promotes interactions between these V(α) and J(α) segments that should facilitate their synapsis. We found that the CCCTC-binding factor (CTCF) binds to E(α) and to many locus promoters, biases E(α) to interact with these promoters, and is required for efficient V(α)-J(α) recombination. Our data indicate that E(α) and CTCF cooperate to create a developmentally regulated chromatin hub that supports V(α)-J(α) synapsis and recombination.


Asunto(s)
Cromatina/genética , Cromatina/inmunología , Genes Codificadores de la Cadena alfa de los Receptores de Linfocito T , Proteínas Represoras/genética , Recombinación V(D)J , Animales , Secuencia de Bases , Factor de Unión a CCCTC , Cartilla de ADN/genética , Elementos de Facilitación Genéticos , Genes Codificadores de la Cadena delta de los Receptores de Linfocito T , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Modelos Genéticos , Modelos Inmunológicos , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA