Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
mBio ; 15(3): e0282123, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38376160

RESUMEN

The cellular junctional architecture remodeling by Listeria adhesion protein-heat shock protein 60 (LAP-Hsp60) interaction for Listeria monocytogenes (Lm) passage through the epithelial barrier is incompletely understood. Here, using the gerbil model, permissive to internalin (Inl) A/B-mediated pathways like in humans, we demonstrate that Lm crosses the intestinal villi at 48 h post-infection. In contrast, the single isogenic (lap- or ΔinlA) or double (lap-ΔinlA) mutant strains show significant defects. LAP promotes Lm translocation via endocytosis of cell-cell junctional complex in enterocytes that do not display luminal E-cadherin. In comparison, InlA facilitates Lm translocation at cells displaying apical E-cadherin during cell extrusion and mucus expulsion from goblet cells. LAP hijacks caveolar endocytosis to traffic integral junctional proteins to the early and recycling endosomes. Pharmacological inhibition in a cell line and genetic knockout of caveolin-1 in mice prevents LAP-induced intestinal permeability, junctional endocytosis, and Lm translocation. Furthermore, LAP-Hsp60-dependent tight junction remodeling is also necessary for InlA access to E-cadherin for Lm intestinal barrier crossing in InlA-permissive hosts. IMPORTANCE: Listeria monocytogenes (Lm) is a foodborne pathogen with high mortality (20%-30%) and hospitalization rates (94%), particularly affecting vulnerable groups such as pregnant women, fetuses, newborns, seniors, and immunocompromised individuals. Invasive listeriosis involves Lm's internalin (InlA) protein binding to E-cadherin to breach the intestinal barrier. However, non-functional InlA variants have been identified in Lm isolates, suggesting InlA-independent pathways for translocation. Our study reveals that Listeria adhesion protein (LAP) and InlA cooperatively assist Lm entry into the gut lamina propria in a gerbil model, mimicking human listeriosis in early infection stages. LAP triggers caveolin-1-mediated endocytosis of critical junctional proteins, transporting them to early and recycling endosomes, facilitating Lm passage through enterocytes. Furthermore, LAP-Hsp60-mediated junctional protein endocytosis precedes InlA's interaction with basolateral E-cadherin, emphasizing LAP and InlA's cooperation in enhancing Lm intestinal translocation. This understanding is vital in combating the severe consequences of Lm infection, including sepsis, meningitis, encephalitis, and brain abscess.


Asunto(s)
Listeria monocytogenes , Listeria , Listeriosis , Recién Nacido , Femenino , Ratones , Embarazo , Humanos , Animales , Listeria monocytogenes/genética , Caveolina 1/metabolismo , Caveolas/metabolismo , Gerbillinae , Proteínas Bacterianas/metabolismo , Listeriosis/metabolismo , Cadherinas/genética
2.
Cell Rep ; 42(5): 112515, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37171960

RESUMEN

Listeria adhesion protein (LAP) is a secreted acetaldehyde alcohol dehydrogenase (AdhE) that anchors to an unknown molecule on the Listeria monocytogenes (Lm) surface, which is critical for its intestinal epithelium crossing. In the present work, immunoprecipitation and mass spectrometry identify internalin B (InlB) as the primary ligand of LAP (KD ∼ 42 nM). InlB-deleted and naturally InlB-deficient Lm strains show reduced LAP-InlB interaction and LAP-mediated pathology in the murine intestine and brain invasion. InlB-overexpressing non-pathogenic Listeria innocua also displays LAP-InlB interplay. In silico predictions reveal that a pocket region in the C-terminal domain of tetrameric LAP is the binding site for InlB. LAP variants containing mutations in negatively charged (E523S, E621S) amino acids in the C terminus confirm altered binding conformations and weaker affinity for InlB. InlB transforms the housekeeping enzyme, AdhE (LAP), into a moonlighting pathogenic factor by fastening on the cell surface.


Asunto(s)
Listeria monocytogenes , Listeria , Animales , Ratones , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Listeria/metabolismo , Listeria monocytogenes/metabolismo , Membrana Celular/metabolismo , Alcohol Deshidrogenasa/metabolismo
3.
ACS Appl Mater Interfaces ; 14(40): 45752-45764, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36173396

RESUMEN

Contamination of meat with pathogenic microorganisms can cause severe illnesses and food waste, which has significant negative impacts on both general health and the economy. In many cases, the expiration date is not a good indicator of meat freshness as there is a high risk of contamination during handling throughout the supply chain. Many biomarkers, including color, odor, pH, temperature, and volatile compounds, are used to determine spoilage. Among these, pH presents a simple and effective biomarker directly linked to the overgrowth of bacteria and degradation of the meat tissue. Low-cost methods for wireless pH monitoring are crucial in detecting spoilage on a large commercial scale. Existing technologies are often limited to short-range detection, with the use of batteries and different electronic components that increases both the manufacturing complexity and cost of the final device. To address these shortcomings, we have developed a cost-effective wireless pH sensor, which uses passive resonant frequency (RF) sensing, combined with a pH-responsive polymer that can be placed within packaged meat products and provide a remote assessment of the risk of microbial spoilage throughout the supply chain. The sensor tag consists of a sensing resonator coated with a pH-sensitive material and a passivated reference resonator operating in a differential frequency configuration. Upon exposure to elevated pH levels >6.8, the coating on the sensing resonator dissolves, which in turn results in a distinct change in the resonant frequency with respect to the reference resonator. Systematic theoretical and experimental results at different pH levels demonstrated that a 20% shift in resonant frequency demarcates the point for spoilage detection. As a proof of concept, the performance of the sensor in remotely detecting the risk of food spoilage was validated in packaged poultry over 10 days. The sensor fabrication process takes advantage of recent developments in the scalable manufacturing of flexible, low-cost devices, including selective laser etching of metalized plastic films and doctor-blade coating of stimuli-responsive polymer films. Furthermore, the biocompatibility of all the materials used in the sensor was confirmed with human intestinal cells (HCT-8 cells).


Asunto(s)
Productos de la Carne , Eliminación de Residuos , Polímeros de Estímulo Receptivo , Humanos , Concentración de Iones de Hidrógeno , Plásticos , Polímeros/química
4.
NPJ Biofilms Microbiomes ; 7(1): 18, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33558519

RESUMEN

Environmental cues promote microbial biofilm formation and physiological and genetic heterogeneity. In food production facilities, biofilms produced by pathogens are a major source for food contamination; however, the pathogenesis of biofilm-isolated sessile cells is not well understood. We investigated the pathogenesis of sessile Listeria monocytogenes (Lm) using cell culture and mouse models. Lm sessile cells express reduced levels of the lap, inlA, hly, prfA, and sigB and show reduced adhesion, invasion, translocation, and cytotoxicity in the cell culture model than the planktonic cells. Oral challenge of C57BL/6 mice with food, clinical, or murinized-InlA (InlAm) strains reveals that at 12 and 24 h post-infection (hpi), Lm burdens are lower in tissues of mice infected with sessile cells than those infected with planktonic cells. However, these differences are negligible at 48 hpi. Besides, the expressions of inlA and lap mRNA in sessile Lm from intestinal content are about 6.0- and 280-fold higher than the sessle inoculum, respectively, suggesting sessile Lm can still upregulate virulence genes shortly after ingestion (12 h). Similarly, exposure to simulated gastric fluid (SGF, pH 3) and intestinal fluid (SIF, pH 7) for 13 h shows equal reduction in sessile and planktonic cell counts, but induces LAP and InlA expression and pathogenic phenotypes. Our data show that the virulence of biofilm-isolated Lm is temporarily attenuated and can be upregulated in mice during the early stage (12-24 hpi) but fully restored at a later stage (48 hpi) of infection. Our study further demonstrates that in vitro cell culture assay is unreliable; therefore, an animal model is essential for studying the pathogenesis of biofilm-isolated bacteria.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Listeria monocytogenes/patogenicidad , Listeriosis/microbiología , Factores de Virulencia/genética , Animales , Adhesión Bacteriana , Proteínas Bacterianas/genética , Células CACO-2 , Modelos Animales de Enfermedad , Femenino , Microbiología de Alimentos , Regulación Bacteriana de la Expresión Génica , Humanos , Listeria monocytogenes/genética , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA