Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Phys Rev Lett ; 133(11): 118102, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39331988

RESUMEN

Polymerlike structures are ubiquitous in nature and synthetic materials. Their configurational and migration properties are often affected by crowded environments leading to nonthermal fluctuations. Here, we study an ideal Rouse chain in contact with a nonhomogeneous active bath, characterized by the presence of active self-propelled agents which exert time-correlated forces on the chain. By means of a coarse-graining procedure, we derive an effective evolution for the center of mass of the chain and show its tendency to migrate toward and preferentially localize in regions of high and low bath activity depending on the model parameters. In particular, we demonstrate that an active bath with nonuniform activity can be used to separate efficiently polymeric species with different lengths and/or connectivity.

2.
Phys Rev Lett ; 131(23): 230401, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38134787

RESUMEN

The Kibble-Zurek mechanism (KZM) predicts that the average number of topological defects generated upon crossing a continuous or quantum phase transition obeys a universal scaling law with the quench time. Fluctuations in the defect number near equilibrium are approximately of Gaussian form, in agreement with the central limit theorem. Using large deviations theory, we characterize the universality of fluctuations beyond the KZM and report the exact form of the rate function in the transverse-field quantum Ising model. In addition, we characterize the scaling of large deviations in an arbitrary continuous phase transition, building on recent evidence establishing the universality of the defect number distribution.

3.
Phys Rev Lett ; 129(12): 120601, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36179178

RESUMEN

We study the nonequilibrium evolution of coexisting ferromagnetic domains in the two-dimensional quantum Ising model-a setup relevant in several contexts, from quantum nucleation dynamics and false-vacuum decay scenarios to recent experiments with Rydberg-atom arrays. We demonstrate that the quantum-fluctuating interface delimiting a large bubble can be studied as an effective one-dimensional system through a "holographic" mapping. For the considered model, the emergent interface excitations map to an integrable chain of fermionic particles. We discuss how this integrability is broken by geometric features of the bubbles and by corrections in inverse powers of the ferromagnetic coupling, and provide a lower bound to the timescale after which the bubble is ultimately expected to melt. Remarkably, we demonstrate that a symmetry-breaking longitudinal field gives rise to a robust ergodicity breaking in two dimensions, a phenomenon underpinned by Stark many-body localization of the emergent fermionic excitations of the interface.

4.
Soft Matter ; 16(22): 5334, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32458961

RESUMEN

Correction for 'Controlling the dynamics of colloidal particles by critical Casimir forces' by Alessandro Magazzù et al., Soft Matter, 2019, 15, 2152-2162, DOI: 10.1039/C8SM01376D.

5.
Soft Matter ; 15(10): 2152-2162, 2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30675607

RESUMEN

Critical Casimir forces can play an important role for applications in nano-science and nano-technology, owing to their piconewton strength, nanometric action range, fine tunability as a function of temperature, and exquisite dependence on the surface properties of the involved objects. Here, we investigate the effects of critical Casimir forces on the free dynamics of a pair of colloidal particles dispersed in the bulk of a near-critical binary liquid solvent, using blinking optical tweezers. In particular, we measure the time evolution of the distance between the two colloids to determine their relative diffusion and drift velocity. Furthermore, we show how critical Casimir forces change the dynamic properties of this two-colloid system by studying the temperature dependence of the distribution of the so-called first-passage time, i.e., of the time necessary for the particles to reach for the first time a certain separation, starting from an initially assigned one. These data are in good agreement with theoretical results obtained from Monte Carlo simulations and Langevin dynamics.

6.
Phys Rev Lett ; 120(13): 130603, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29694194

RESUMEN

We investigate the robustness of a dynamical phase transition against quantum fluctuations by studying the impact of a ferromagnetic nearest-neighbor spin interaction in one spatial dimension on the nonequilibrium dynamical phase diagram of the fully connected quantum Ising model. In particular, we focus on the transient dynamics after a quantum quench and study the prethermal state via a combination of analytic time-dependent spin wave theory and numerical methods based on matrix product states. We find that, upon increasing the strength of the quantum fluctuations, the dynamical critical point fans out into a chaotic dynamical phase within which the asymptotic ordering is characterized by strong sensitivity to the parameters and initial conditions. We argue that such a phenomenon is general, as it arises from the impact of quantum fluctuations on the mean-field out of equilibrium dynamics of any system which exhibits a broken discrete symmetry.

7.
Phys Rev Lett ; 118(5): 050602, 2017 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-28211736

RESUMEN

The nonequilibrium short-time critical behaviors of driven and undriven lattice gases are investigated via Monte Carlo simulations in two spatial dimensions starting from a fully disordered initial configuration. In particular, we study the time evolution of suitably defined order parameters, which account for the strong anisotropy introduced by the homogeneous drive. We demonstrate that, at short times, the dynamics of all these models is unexpectedly described by an effective continuum theory in which transverse fluctuations, i.e., fluctuations averaged along the drive, are Gaussian, irrespective of this being actually the case in the stationary state. Strong numerical evidence is provided, in remarkable agreement with that theory, both for the driven and undriven lattice gases, which therefore turn out to display the same short-time dynamics.

8.
Phys Rev Lett ; 118(13): 135701, 2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28409986

RESUMEN

We study the prethermal dynamics of an interacting quantum field theory with an N-component order parameter and O(N) symmetry, suddenly quenched in the vicinity of a dynamical critical point. Depending on the initial conditions, the evolution of the order parameter, and of the response and correlation functions, can exhibit a temporal crossover between universal dynamical scaling regimes governed, respectively, by a quantum and a classical prethermal fixed point, as well as a crossover from a Gaussian to a non-Gaussian prethermal dynamical scaling. Together with a recent experiment, this suggests that quenches may be used in order to explore the rich variety of dynamical critical points occurring in the nonequilibrium dynamics of a quantum many-body system. We illustrate this fact by using a combination of renormalization group techniques and a nonperturbative large-N limit.

9.
Phys Rev Lett ; 112(14): 148101, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24766019

RESUMEN

The influence of migration on the stochastic dynamics of subdivided populations is still an open issue in various evolutionary models. Here, we develop a self-consistent mean-field-like method in order to determine the effects of migration on relevant nonequilibrium properties, such as the mean fixation time. If evolution strongly favors coexistence of species (e.g., balancing selection), the mean fixation time develops an unexpected minimum as a function of the migration rate. Our analysis hinges only on the presence of a separation of time scales between local and global dynamics, and therefore, it carries over to other nonequilibrium processes in physics, biology, ecology, and social sciences.


Asunto(s)
Ecosistema , Genética de Población/métodos , Modelos Genéticos , Migración Animal , Evolución Biológica , Conducta Competitiva , Dinámica Poblacional
10.
Phys Rev Lett ; 111(5): 055701, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23952419

RESUMEN

Colloids immersed in a critical binary liquid mixture are subject to critical Casimir forces (CCFs) because they confine its concentration fluctuations and influence the latter via effective surface fields. To date, CCFs have been primarily studied in thermodynamic equilibrium. However, due to the critical slowing down, the order parameter around a particle can easily be perturbed by any motion of the colloid or by solvent flow. This leads to significant but largely unexplored changes in the CCF. Here we study the drag force on a single colloidal particle moving in a near-critical fluid mixture and the relative motion of two colloids due to the CCF acting on them. In order to account for the kinetic couplings among the order parameter field, the solvent velocity field, and the particle motion, we use a fluid particle dynamics method. These studies extend the understanding of CCFs from thermal equilibrium to nonequilibrium processes, which are relevant to current experiments, and show the emergence of significant effects near the critical point.

11.
Phys Rev Lett ; 111(19): 197203, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24266486

RESUMEN

We study the dynamics of a quantum Ising chain after the sudden introduction of a nonintegrable long-range interaction. Via an exact mapping onto a fully connected lattice of hard-core bosons, we show that a prethermal state emerges and we investigate its features by focusing on a class of physically relevant observables. In order to gain insight into the eventual thermalization, we outline a diagrammatic approach which complements the study of the previous quasistationary state and provides the basis for a self-consistent solution of the kinetic equation. This analysis suggests that both the temporal decay towards the prethermal state and the crossover to the eventual thermal one may occur algebraically.

12.
Phys Rev E ; 108(4-1): 044604, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37978697

RESUMEN

The motion of a colloidal probe in a complex fluid, such as a micellar solution, is usually described by the generalized Langevin equation, which is linear. However, recent numerical simulations and experiments have shown that this linear model fails when the probe is confined and that the intrinsic dynamics of the probe is actually nonlinear. Noting that the kurtosis of the displacement of the probe may reveal the nonlinearity of its dynamics also in the absence confinement, we compute it for a probe coupled to a Gaussian field and possibly trapped by a harmonic potential. We show that the excess kurtosis increases from zero at short times, reaches a maximum, and then decays algebraically at long times, with an exponent which depends on the spatial dimensionality and on the features and correlations of the dynamics of the field. Our analytical predictions are confirmed by numerical simulations of the stochastic dynamics of the probe and the field where the latter is represented by a finite number of modes.

13.
Phys Rev Lett ; 109(25): 250602, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23368442

RESUMEN

We study the large deviation statistics of the intensive work done by globally changing a control parameter in a thermally isolated quantum many-body system. We show that, upon approaching a critical point, large deviations well below the mean work display universal features related to the critical Casimir effect in the corresponding classical system. Large deviations well above the mean are, instead, of quantum nature and not captured by the quantum-to-classical correspondence. For a bosonic system we show that in this latter regime a transition from exponential to power-law statistics, analogous to the equilibrium Bose-Einstein condensation, may occur depending on the parameters of the quench and on the spatial dimensionality.

14.
J Chem Phys ; 137(3): 034504, 2012 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-22830708

RESUMEN

The influence of ions on the bulk phase behavior of binary liquid mixtures acting as their solvents and on the corresponding interfacial structures close to a planar wall is investigated by means of density functional theory based on local descriptions of the effective interactions between ions and their solvents. The bilinear coupling approximation (BCA), which has been used in numerous previous related investigations, is compared with a novel local density approximation (LDA) for the ion-solvent interactions. It turns out that within BCA the bulk phase diagrams, the two-point correlation functions, and critical adsorption exhibit qualitative features which are not compatible with the available experimental data. These discrepancies do not occur within the proposed LDA. Further experimental investigations are suggested which assess the reliability of the proposed LDA. This approach allows one to obtain a consistent and rather general understanding of the effects of ions on solvent properties. From our analysis we infer, in particular, that there can be an experimentally detectable influence of ions on binary liquid mixtures due to steric effects but not due to charge effects.

15.
Phys Rev E ; 106(4-1): 044112, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36397516

RESUMEN

We study the nonequilibrium dynamics of two particles confined in two spatially separated harmonic potentials and linearly coupled to the same thermally fluctuating scalar field, a cartoon for optically trapped colloids in contact with a medium close to a continuous phase transition. When an external periodic driving is applied to one of these particles, a nonequilibrium periodic state is eventually reached in which their motion synchronizes thanks to the field-mediated effective interaction, a phenomenon already observed in experiments. We fully characterize the nonlinear response of the second particle as a function of the driving frequency, in particular far from the adiabatic regime in which the field can be assumed to relax instantaneously. We compare the perturbative, analytic solution to its adiabatic approximation, thus determining the limits of validity of the latter, and we qualitatively test our predictions against numerical simulations.

16.
Phys Rev E ; 106(4-1): 044127, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36397533

RESUMEN

We study the statistics of the first-passage time of a single run-and-tumble particle (RTP) in one spatial dimension, with or without resetting, to a fixed target located at L>0. First, we compute the first-passage time distribution of a free RTP, without resetting or in a confining potential, but averaged over the initial position drawn from an arbitrary distribution p(x). Recent experiments used a noninstantaneous resetting protocol that motivated us to study in particular the case where p(x) corresponds to the stationary non-Boltzmann distribution of an RTP in the presence of a harmonic trap. This distribution p(x) is characterized by a parameter ν>0, which depends on the microscopic parameters of the RTP dynamics. We show that the first-passage time distribution of the free RTP, drawn from this initial distribution, develops interesting singular behaviors, depending on the value of ν. We then switch on resetting, mimicked by relaxation of the RTP in the presence of a harmonic trap. Resetting leads to a finite mean first-passage time and we study this as a function of the resetting rate for different values of the parameters ν and b=L/c, where c is the position of the right edge of the initial distribution p(x). In the diffusive limit of the RTP dynamics, we find a rich phase diagram in the (b,ν) plane, with an interesting reentrance phase transition. Away from the diffusive limit, qualitatively similar rich behaviors emerge for the full RTP dynamics.

17.
Phys Rev E ; 105(5-1): 054125, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35706305

RESUMEN

We study the nonequilibrium relaxational dynamics of a probe particle linearly coupled to a thermally fluctuating scalar field and subject to a harmonic potential, which provides a cartoon for an optically trapped colloid immersed in a fluid close to its bulk critical point. The average position of the particle initially displaced from the position of mechanical equilibrium is shown to feature long-time algebraic tails as the critical point of the field is approached, the universal exponents of which are determined in arbitrary spatial dimensions. As expected, this behavior cannot be captured by adiabatic approaches which assumes fast field relaxation. The predictions of the analytic, perturbative approach are qualitatively confirmed by numerical simulations.

18.
Phys Rev E ; 103(6-1): 062118, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34271666

RESUMEN

The critical Casimir force (CCF) arises from confining fluctuations in a critical fluid and thus it is a fluctuating quantity itself. While the mean CCF is universal, its (static) variance has previously been found to depend on the microscopic details of the system which effectively set a large-momentum cutoff in the underlying field theory, rendering it potentially large. This raises the question how the properties of the force variance are reflected in experimentally observable quantities, such as the thickness of a wetting film or the position of a suspended colloidal particle. Here, based on a rigorous definition of the instantaneous force, we analyze static and dynamic correlations of the CCF for a conserved fluid in film geometry for various boundary conditions within the Gaussian approximation. We find that the dynamic correlation function of the CCF is independent of the momentum cutoff and decays algebraically in time. Within the Gaussian approximation, the associated exponent depends only on the dynamic universality class but not on the boundary conditions. We furthermore consider a fluid film, the thickness of which can fluctuate under the influence of the time-dependent CCF. The latter gives rise to an effective non-Markovian noise in the equation of motion of the film boundary and induces a distinct contribution to the position variance. Within the approximations used here, at short times, this contribution grows algebraically in time whereas, at long times, it saturates and contributes to the steady-state variance of the film thickness.

19.
Phys Rev E ; 102(4-1): 042128, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33212614

RESUMEN

We study the dynamics of the statistics of the energy transferred across a point along a quantum chain which is prepared in the inhomogeneous initial state obtained by joining two identical semi-infinite parts thermalized at two different temperatures. In particular, we consider the transverse field Ising and harmonic chains as prototypical models of noninteracting fermionic and bosonic excitations, respectively. Within the so-called hydrodynamic limit of large space-time scales we first discuss the mean values of the energy density and current, and then, aiming at the statistics of fluctuations, we calculate exactly the scaled cumulant generating function of the transferred energy. From the latter, the evolution of the associated large deviation function is obtained. A natural interpretation of our results is provided in terms of a semiclassical picture of quasiparticles moving ballistically along classical trajectories. Similarities and differences between the transferred energy scaled cumulant and the large deviation functions in the cases of noninteracting fermions and bosons are discussed.

20.
Phys Rev E ; 100(3-1): 032114, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31640007

RESUMEN

We study the statistics of large deviations of the intensive work done in an interaction quench of a one-dimensional Bose gas with a large number N of particles, system size L, and fixed density. We consider the case in which the system is initially prepared in the noninteracting ground state and a repulsive interaction is suddenly turned on. For large deviations of the work below its mean value, we show that the large-deviation principle holds by means of the quench action approach. Using the latter, we compute exactly the so-called rate function and study its properties analytically. In particular, we find that fluctuations close to the mean value of the work exhibit a marked non-Gaussian behavior, even though their probability is always exponentially suppressed below it as L increases. Deviations larger than the mean value exhibit an algebraic decay whose exponent cannot be determined directly by large-deviation theory. Exploiting the exact Bethe ansatz representation of the eigenstates of the Hamiltonian, we calculate this exponent for vanishing particle density. Our approach can be straightforwardly generalized to quantum quenches in other interacting integrable systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA