Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(31): e2221522120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487085

RESUMEN

Cataract is a leading ocular disease causing global blindness. The mechanism of cataractogenesis has not been well defined. Here, we demonstrate that the heat shock protein 90ß (HSP90ß) plays a fundamental role in suppressing cataractogenesis. HSP90ß is the most dominant HSP in normal lens, and its constitutive high level of expression is largely derived from regulation by Sp1 family transcription factors. More importantly, HSP90ß is significantly down-regulated in human cataract patients and in aging mouse lenses, whereas HSP90ß silencing in zebrafish causes cataractogenesis, which can only be rescued by itself but not other HSP90 genes. Mechanistically, HSP90ß can directly interact with CHMP4B, a newly-found client protein involved in control of cytokinesis. HSP90ß silencing causes upregulation of CHMP4B and another client protein, the tumor suppressor p53. CHMP4B upregulation or overexpression induces excessive division of lens epithelial cells without proper differentiation. As a result, these cells were triggered to undergo apoptosis due to activation of the p53/Bak-Bim pathway, leading to cataractogenesis and microphthalmia. Silence of both HSP90ß and CHMP4B restored normal phenotype of zebrafish eye. Together, our results reveal that HSP90ß is a critical inhibitor of cataractogenesis through negative regulation of CHMP4B and the p53-Bak/Bim pathway.


Asunto(s)
Catarata , Proteínas HSP90 de Choque Térmico , Proteína p53 Supresora de Tumor , Animales , Humanos , Ratones , Envejecimiento/genética , Catarata/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Cuerpos Multivesiculares/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
2.
Aging (Albany NY) ; 15(17): 8812-8832, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37683133

RESUMEN

Deleted in breast cancer 1 (DBC1) was initially identified from a homozygously deleted region in human chromosome 8p21. It has been well established that DBC1 plays a dual role during cancer development. Depending on the physiological context, it can promote or inhibit tumorigenesis. Whether it plays a role in lens pathogenesis remains elusive. In the present study, we demonstrated that DBC1 is highly expressed in lens epithelial cells from different vertebrates and in retina pigment epithelial cells as well. Moreover, DBC1 is SUMOylated through SUMO1 conjugation at K591 residue in human and mouse lens epithelial cells. The SUMOylated DBC1 is localized in the nucleus and plays an essential role in promoting stress-induced apoptosis. Silence of DBC1 attenuates oxidative stress-induced apoptosis. In contrast, overexpression of DBC1 enhances oxidative stress-induced apoptosis, and this process depends on p53. Mechanistically, DBC1 interacts with p53 to regulate its phosphorylation status at multiple sites and the SUMOylation of DBC1 enhances its interaction with p53. Together, our results identify that DBC1 is an important regulator mediating stress-induced apoptosis in lens, and thus participates in control of lens cataractogenesis.


Asunto(s)
Apoptosis , Proteína p53 Supresora de Tumor , Animales , Humanos , Ratones , Apoptosis/genética , Carcinogénesis , Transformación Celular Neoplásica , Células Epiteliales , Proteína SUMO-1/genética , Proteína p53 Supresora de Tumor/genética
3.
Adv Sci (Weinh) ; 9(14): e2105539, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35293697

RESUMEN

The methyltransferase EZH2 plays an important role in regulating chromatin conformation and gene transcription. Phosphorylation of EZH2 at S21 by AKT kinase suppresses its function. However, protein phosphatases responsible for the dephosphorylation of EZH2-S21 remain elusive. Here, it is demonstrated that EZH2 is highly expressed in the ocular lens, and AKT-EZH2 axis is important in TGFß-induced epithelial-mesenchymal transition (EMT). More importantly, it is identified that MYPT1/PP1 dephosphorylates EZH2-S21 and thus modulates its functions. MYPT1 knockout accelerates EMT, but expression of the EZH2-S21A mutant suppresses EMT through control of multiple families of genes. Furthermore, the phosphorylation status and gene expression modulation of EZH2 are implicated in control of anterior subcapsular cataracts (ASC) in human and mouse eyes. Together, the results identify the specific phosphatase for EZH2-S21 and reveal EZH2 dephosphorylation control of several families of genes implicated in lens EMT and ASC pathogenesis. These results provide important novel information in EZH2 function and regulation.


Asunto(s)
Catarata , Proteína Potenciadora del Homólogo Zeste 2 , Transición Epitelial-Mesenquimal , Cristalino , Animales , Catarata/genética , Catarata/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Transición Epitelial-Mesenquimal/genética , Fibrosis , Humanos , Cristalino/metabolismo , Cristalino/patología , Ratones , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo
4.
Aging Cell ; 20(9): e13458, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34425033

RESUMEN

The function of the transcription factor, cAMP response element-binding protein (CREB), is activated through S133 phosphorylation by PKA and others. Regarding its inactivation, it is not well defined. cAMP response element-binding protein plays an essential role in promoting cell proliferation, neuronal survival and the synaptic plasticity associated with long-term memory. Our recent studies have shown that CREB is an important player in mediating stress response. Here, we have demonstrated that CREB regulates aging process through suppression of αB-crystallin and activation of the p300-p53-Bak/Bax signaling axis. First, we determined that two specific protein phosphatases, PP-1ß and PP-2Aα, can inactivate CREB through S133 dephosphorylation. Subsequently, we demonstrated that cells expressing the S133A-CREB, a mutant mimicking constant dephosphorylation at S133, suppress CREB functions in aging control and stress response. Mechanistically, S133A-CREB not only significantly suppresses CREB control of αB-crystallin gene, but also represses CREB-mediated activation of p53 acetylation and downstream Bak/Bax genes. cAMP response element-binding protein suppression of αB-crystallin and its activation of p53 acetylation are major molecular events observed in human cataractous lenses of different age groups. Together, our results demonstrate that PP-1ß and PP-2Aα modulate CREB functions in aging control and stress response through de-regulation of αB-crystallin gene and p300-p53-Bax/Bak signaling axis, which regulates human cataractogenesis in the aging lens.


Asunto(s)
Envejecimiento/metabolismo , Proteína de Unión a CREB/metabolismo , Regulación hacia Abajo , Proteína p300 Asociada a E1A/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Cadena B de alfa-Cristalina/metabolismo , Humanos , Estrés Oxidativo , Transducción de Señal , Cadena B de alfa-Cristalina/genética
5.
Front Cell Dev Biol ; 9: 660494, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34195189

RESUMEN

Protein sumoylation is one of the most important post-translational modifications regulating many biological processes (Flotho A & Melchior F. 2013. Ann Rev. Biochem. 82:357-85). Our previous studies have shown that sumoylation plays a fundamental role in regulating lens differentiation (Yan et al., 2010. PNAS, 107(49):21034-9.; Gong et al., 2014. PNAS. 111(15):5574-9). Whether sumoylation is implicated in lens pathogenesis remains elusive. Here, we present evidence to show that the protein inhibitor of activated STAT-1 (PIAS1), a E3 ligase for sumoylation, is implicated in regulating stress-induced lens pathogenesis. During oxidative stress-induced cataractogenesis, expression of PIAS1 is significantly altered at both mRNA and protein levels. Upregulation and overexpression of exogenous PIAS1 significantly enhances stress-induced apoptosis. In contrast, silence of PIAS1 with CRISPR/Cas9 technology attenuates stress-induced apoptosis. Mechanistically, different from other cells, PIAS1 has little effect to activate JNK but upregulates Bax, a major proapoptotic regulator. Moreover, Bax upregulation is derived from the enhanced transcription activity of the upstream transcription factor, p53. As revealed previously in other cells by different laboratories, our data also demonstrate that PIAS1 promotes SUMO1 conjugation of p53 at K386 residue in lens epithelial cells and thus enhances p53 transcription activity to promote Bax upregulation. Silence of Bax expression largely abrogates PIAS1-mediated enhancement of stress-induced apoptosis. Thus, our results demonstrated that PIAS1 promotes oxidative stress-induced apoptosis through positive control of p53, which specifically upregulates expression of the downstream proapoptotic regulator Bax. As a result, PIAS1-promoted apoptosis induced by oxidative stress is implicated in lens pathogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA