Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell Mol Life Sci ; 79(2): 78, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35044538

RESUMEN

Three-dimensional (3D) in vitro culture systems using human induced pluripotent stem cells (hiPSCs) are useful tools to model neurodegenerative disease biology in physiologically relevant microenvironments. Though many successful biomaterials-based 3D model systems have been established for other neurogenerative diseases, such as Alzheimer's disease, relatively few exist for Parkinson's disease (PD) research. We employed tissue engineering approaches to construct a 3D silk scaffold-based platform for the culture of hiPSC-dopaminergic (DA) neurons derived from healthy individuals and PD patients harboring LRRK2 G2019S or GBA N370S mutations. We then compared results from protein, gene expression, and metabolic analyses obtained from two-dimensional (2D) and 3D culture systems. The 3D platform enabled the formation of dense dopamine neuronal network architectures and developed biological profiles both similar and distinct from 2D culture systems in healthy and PD disease lines. PD cultures developed in 3D platforms showed elevated levels of α-synuclein and alterations in purine metabolite profiles. Furthermore, computational network analysis of transcriptomic networks nominated several novel molecular interactions occurring in neurons from patients with mutations in LRRK2 and GBA. We conclude that the brain-like 3D system presented here is a realistic platform to interrogate molecular mechanisms underlying PD biology.


Asunto(s)
Neuronas Dopaminérgicas/patología , Enfermedad de Parkinson/patología , Bioingeniería , Técnicas de Cultivo Tridimensional de Células , Células Cultivadas , Neuronas Dopaminérgicas/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/patología , Neurogénesis , Seda/química , Andamios del Tejido/química
2.
Nature ; 480(7378): 547-51, 2011 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-22056989

RESUMEN

Human pluripotent stem cells (PSCs) are a promising source of cells for applications in regenerative medicine. Directed differentiation of PSCs into specialized cells such as spinal motoneurons or midbrain dopamine (DA) neurons has been achieved. However, the effective use of PSCs for cell therapy has lagged behind. Whereas mouse PSC-derived DA neurons have shown efficacy in models of Parkinson's disease, DA neurons from human PSCs generally show poor in vivo performance. There are also considerable safety concerns for PSCs related to their potential for teratoma formation or neural overgrowth. Here we present a novel floor-plate-based strategy for the derivation of human DA neurons that efficiently engraft in vivo, suggesting that past failures were due to incomplete specification rather than a specific vulnerability of the cells. Midbrain floor-plate precursors are derived from PSCs 11 days after exposure to small molecule activators of sonic hedgehog (SHH) and canonical WNT signalling. Engraftable midbrain DA neurons are obtained by day 25 and can be maintained in vitro for several months. Extensive molecular profiling, biochemical and electrophysiological data define developmental progression and confirm identity of PSC-derived midbrain DA neurons. In vivo survival and function is demonstrated in Parkinson's disease models using three host species. Long-term engraftment in 6-hydroxy-dopamine-lesioned mice and rats demonstrates robust survival of midbrain DA neurons derived from human embryonic stem (ES) cells, complete restoration of amphetamine-induced rotation behaviour and improvements in tests of forelimb use and akinesia. Finally, scalability is demonstrated by transplantation into parkinsonian monkeys. Excellent DA neuron survival, function and lack of neural overgrowth in the three animal models indicate promise for the development of cell-based therapies in Parkinson's disease.


Asunto(s)
Trasplante de Tejido Encefálico , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/trasplante , Células Madre Embrionarias/citología , Enfermedad de Parkinson/terapia , Animales , Diferenciación Celular , Línea Celular , Supervivencia Celular , Femenino , Humanos , Macaca mulatta , Mesencéfalo/citología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratas , Ratas Sprague-Dawley
3.
Nature ; 461(7262): 402-6, 2009 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-19693009

RESUMEN

The isolation of human induced pluripotent stem cells (iPSCs) offers a new strategy for modelling human disease. Recent studies have reported the derivation and differentiation of disease-specific human iPSCs. However, a key challenge in the field is the demonstration of disease-related phenotypes and the ability to model pathogenesis and treatment of disease in iPSCs. Familial dysautonomia (FD) is a rare but fatal peripheral neuropathy, caused by a point mutation in the IKBKAP gene involved in transcriptional elongation. The disease is characterized by the depletion of autonomic and sensory neurons. The specificity to the peripheral nervous system and the mechanism of neuron loss in FD are poorly understood owing to the lack of an appropriate model system. Here we report the derivation of patient-specific FD-iPSCs and the directed differentiation into cells of all three germ layers including peripheral neurons. Gene expression analysis in purified FD-iPSC-derived lineages demonstrates tissue-specific mis-splicing of IKBKAP in vitro. Patient-specific neural crest precursors express particularly low levels of normal IKBKAP transcript, suggesting a mechanism for disease specificity. FD pathogenesis is further characterized by transcriptome analysis and cell-based assays revealing marked defects in neurogenic differentiation and migration behaviour. Furthermore, we use FD-iPSCs for validating the potency of candidate drugs in reversing aberrant splicing and ameliorating neuronal differentiation and migration. Our study illustrates the promise of iPSC technology for gaining new insights into human disease pathogenesis and treatment.


Asunto(s)
Disautonomía Familiar/patología , Disautonomía Familiar/terapia , Modelos Biológicos , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/trasplante , Adolescente , Empalme Alternativo/efectos de los fármacos , Empalme Alternativo/genética , Animales , Proteínas Portadoras/genética , Desdiferenciación Celular , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Células Cultivadas , Niño , Disautonomía Familiar/tratamiento farmacológico , Disautonomía Familiar/genética , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Humanos , Cinetina/farmacología , Cinetina/uso terapéutico , Masculino , Ratones , Cresta Neural/citología , Cresta Neural/efectos de los fármacos , Especificidad de Órganos , Fenotipo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Factores de Elongación Transcripcional
4.
Mol Cell Neurosci ; 44(4): 362-73, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20470892

RESUMEN

It is well established that cerebellar granule cell precursors (GCPs) initially derive from progenitors in the rhombic lip of the embryonic cerebellar primordium. GCPs proliferate and migrate tangentially across the cerebellum to form the external granule cell layer (EGL) in late embryogenesis and early postnatal development. It is unclear whether GCPs are specified exclusively in the embryonic rhombic lip or whether their precursor persists in the neonate. Using transgenic mice expressing DsRed under the human glial fibrillary acidic protein (hGFAP) promoter, we found 2 populations of DsRed(+) cells in the EGL in the first postnatal week defined by bright and faint DsRed-fluorescent signal. Bright DsRed(+) cells have a protein expression profile and electrophysiological characteristics typical of astrocytes, but faint DsRed(+) cells in the EGL and internal granule cell layer (IGL) express markers and physiological properties of immature neurons. To determine if these astroglial cells gave rise to GCPs, we genetically tagged them with EGFP or betagal reporter genes at postnatal day (P)3-P5 using a hGFAP promoter driven inducible Cre recombinase. We found that GFAP promoter(+) cells in the EGL are proliferative and express glial and neural stem cell markers. In addition, immature granule cells (GCs) en route to the IGL at P12 as well as GCs in the mature cerebellum, 30days after recombination, express the reporter protein, suggesting that GFAP promoter(+) cells in the EGL generate a subset of granule cells. The identification of glial cells which function as neuronal progenitor cells profoundly impacts our understanding of cellular plasticity in the developing cerebellum.


Asunto(s)
Astrocitos/metabolismo , Cerebelo/citología , Proteína Ácida Fibrilar de la Glía/metabolismo , Células Madre/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/inmunología , Linaje de la Célula/fisiología , Genes Reporteros , Proteínas Fluorescentes Verdes , Integrasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/fisiología , Neuronas/citología , Regiones Promotoras Genéticas/genética , Células Madre/citología , Factores de Tiempo , beta-Galactosidasa
5.
J Neurosci ; 29(4): 1202-11, 2009 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-19176828

RESUMEN

Chronic postnatal hypoxia causes an apparent loss of cortical neurons that is reversed during recovery (Fagel et al., 2006). The cellular and molecular mechanisms underlying this plasticity are not understood. Here, we show that chronic hypoxia from postnatal days 3 (P3) to 10 causes a 30% decrease in cortical neurons and a 24% decrease in cortical volume. T-brain-1 (Tbr1)(+) and SMI-32(+) excitatory neuron numbers were completely recovered 1 month after the insult, but the mice showed a residual deficit in Parvalbumin(+) and Calretinin(+) GABAergic interneurons. In contrast, hypoxic mice carrying a disrupted fibroblast growth factor receptor-1 (Fgfr1) gene in GFAP+ cells [Fgfr1 conditional knock-out (cKO)], demonstrated a persistent loss of excitatory cortical neurons and a worsening of the interneuron defect. Labeling proliferating progenitors at P17 revealed increased generation of cortical NeuN(+) and Tbr1(+) excitatory neurons in wild-type mice subjected to hypoxic insult, whereas Fgfr1 cKO failed to mount a cortical neurogenetic response. Hypoxic wild-type mice also demonstrated a twofold increase in cell proliferation in the subventricular zone (SVZ) at P17 and a threefold increase in neurogenesis in the olfactory bulb (OB) at P48, compared with normoxic mice. In contrast, Fgfr1 cKO mice had decreased SVZ cell proliferation and curtailed reactive neurogenesis in the OB. Thus, the activation of FGFR-1 in GFAP+ cells is required for neuronal recovery after neonatal hypoxic injury, which is attributable in part to enhanced cortical and OB neurogenesis. In contrast, there is incomplete recovery of inhibitory neurons after injury, which may account for persistent behavioral deficits.


Asunto(s)
Corteza Cerebral/patología , Hipoxia/patología , Regeneración Nerviosa/fisiología , Neuronas/fisiología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/fisiología , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Bromodesoxiuridina/metabolismo , Proliferación Celular , Corteza Cerebral/fisiopatología , Creatinina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Hipoxia/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/fisiología , Bulbo Olfatorio , Parvalbúminas/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/deficiencia , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Proteínas de Dominio T Box
6.
Stem Cells ; 27(5): 1152-63, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19418461

RESUMEN

Neural stem or progenitor cells (NSC/NPCs) able to generate the different neuron and glial cell types of the cerebellum have been isolated in vitro, but their identity and location in the intact cerebellum are unclear. Here, we use inducible Cre recombination in GFAPCreER(T2) mice to irreversibly activate reporter gene expression at P2 (postnatal day 2), P5, and P12 in cells with GFAP (glial fibrillary acidic protein) promoter activity and analyze the fate of genetically tagged cells in vivo. We show that cells tagged at P2-P5 with beta-galactosidase or enhanced green fluorescent proteins reporter genes generate at least 30% of basket and stellate GABAergic interneurons in the molecular layer (ML) and that they lose their neurogenic potential by P12, after which they generate only glia. Tagged cells in the cerebellar white matter (WM) were initially GFAP/S100beta+ and expressed the NSC/NPCs proteins LeX, Musashi1, and Sox2 in vivo. One week after tagging, reporter+ cells in the WM upregulated the neuronal progenitor markers Mash1, Pax2, and Gad-67. These Pax2+ progenitors migrated throughout the cerebellar cortex, populating the ML and leaving the WM by P18. These data suggest that a pool of GFAP/S100beta+ glial cells located in the cerebellar WM generate a large fraction of cerebellar interneurons for the ML within the first postnatal 12 days of cerebellar development. This restricted critical period implies that powerful inhibitory factors may restrict their fate potential in vivo at later stages of development.


Asunto(s)
Cerebelo/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Interneuronas/metabolismo , Regiones Promotoras Genéticas/genética , Células Madre/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Biomarcadores/metabolismo , Linaje de la Célula/efectos de los fármacos , Cerebelo/citología , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Integrasas/metabolismo , Interneuronas/citología , Interneuronas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Recombinación Genética/genética , Células Madre/citología , Células Madre/efectos de los fármacos , Tamoxifeno/farmacología , Factores de Tiempo
7.
J Neurosci ; 26(33): 8609-21, 2006 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-16914687

RESUMEN

To identify the fates that astroglial cells can attain in the postnatal brain, we generated mice carrying an inducible Cre recombinase (Cre-ER(T2)) controlled by the human GFAP promoter (hGFAP). In mice carrying the GCE (hGFAP-Cre-ER(T2)) transgene, OHT (4-hydroxy-tamoxifen) injections induced Cre recombination in astroglial cells at postnatal day 5 and allowed us to permanently tag these cells with reporter genes. Three days after recombination, reporter-tagged cells were quiescent astroglial cells that expressed the stem cell marker LeX in the subventricular zone (SVZ) and dentate gyrus (DG). After 2-4 weeks, the tagged GFAP lineage included proliferating progenitors expressing the neuronal marker Dcx (Doublecortin) in the SVZ and the DG. After 4 weeks, the GFAP lineage generated mature neurons in the olfactory bulb (OB), DG, and, strikingly, also in the cerebral cortex. A major portion of all neurons in the DG and OB born at the end of the first postnatal week were generated from GFAP+ cells. In addition to neurons, mature oligodendrocytes and astrocytes populating the cerebral cortex and white matter were also the progeny of GFAP+ astroglial ancestors. Thus, genetic fate mapping of postnatal GFAP+ cells reveals that they seed the postnatal brain with neural progenitors/stem cells that in turn give rise to neural precursors and their mature neuronal and oligodendrocytic progeny in many CNS regions, including the cerebral cortex.


Asunto(s)
Animales Recién Nacidos/fisiología , Astrocitos/citología , Diferenciación Celular , Linaje de la Célula , Neuronas/citología , Células Madre/citología , Animales , Animales Recién Nacidos/metabolismo , Astrocitos/metabolismo , Encéfalo/citología , Ventrículos Cerebrales , Proteína Doblecortina , Femenino , Proteína Ácida Fibrilar de la Glía/genética , Humanos , Integrasas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Bulbo Olfatorio/citología , Oligodendroglía/citología , Regiones Promotoras Genéticas , Recombinación Genética , Transgenes
8.
Neuroscientist ; 13(2): 173-85, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17404377

RESUMEN

Three main cellular components have been described in the CNS: neurons, astrocytes, and oligodendrocytes. In the past 10 years, lineage studies first based on retroviruses in the embryonic CNS and then by genetic fate mapping in both the prenatal and postnatal CNS have proposed that astroglial cells can be progenitors for neurons and oligodendrocytes. Hence, the population of astroglial cells is increasingly recognized as heterogeneous and diverse, encompassing cell types performing widely different roles in development and plasticity. Astroglial cells populating the neurogenic niches increase their proliferation after perinatal injury and in young mice can differentiate into neurons and oligodendrocytes that migrate to the cerebral cortex, replacing the cells that are lost. Although much remains to be learned about this process, it appears that the up-regulation of the Fibroblast growth factor receptor is critical for mediating the injury-induced increase in cell division and perhaps for the neuronal differentiation of astroglial cells.


Asunto(s)
Astrocitos/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética , Sistema Nervioso Central/crecimiento & desarrollo , Células Madre/metabolismo , Animales , Astrocitos/citología , Proliferación Celular , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Humanos , Regeneración Nerviosa/genética , Plasticidad Neuronal/genética , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Células Madre/citología
9.
Nat Biotechnol ; 35(2): 154-163, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28112759

RESUMEN

Considerable progress has been made in converting human pluripotent stem cells (hPSCs) into functional neurons. However, the protracted timing of human neuron specification and functional maturation remains a key challenge that hampers the routine application of hPSC-derived lineages in disease modeling and regenerative medicine. Using a combinatorial small-molecule screen, we previously identified conditions to rapidly differentiate hPSCs into peripheral sensory neurons. Here we generalize the approach to central nervous system (CNS) fates by developing a small-molecule approach for accelerated induction of early-born cortical neurons. Combinatorial application of six pathway inhibitors induces post-mitotic cortical neurons with functional electrophysiological properties by day 16 of differentiation, in the absence of glial cell co-culture. The resulting neurons, transplanted at 8 d of differentiation into the postnatal mouse cortex, are functional and establish long-distance projections, as shown using iDISCO whole-brain imaging. Accelerated differentiation into cortical neuron fates should facilitate hPSC-based strategies for disease modeling and cell therapy in CNS disorders.


Asunto(s)
Diferenciación Celular/fisiología , Fármacos del Sistema Nervioso Central/administración & dosificación , Neuronas/citología , Neuronas/fisiología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Técnicas de Cultivo Celular por Lotes/métodos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Humanos , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Neuronas/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos
10.
Nat Biotechnol ; 33(2): 204-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25580598

RESUMEN

Recent studies have shown evidence of behavioral recovery after transplantation of human pluripotent stem cell (PSC)-derived neural cells in animal models of neurological disease. However, little is known about the mechanisms underlying graft function. Here we use optogenetics to modulate in real time electrophysiological and neurochemical properties of mesencephalic dopaminergic (mesDA) neurons derived from human embryonic stem cells (hESCs). In mice that had recovered from lesion-induced Parkinsonian motor deficits, light-induced selective silencing of graft activity rapidly and reversibly re-introduced the motor deficits. The re-introduction of motor deficits was prevented by the dopamine agonist apomorphine. These results suggest that functionality depends on graft neuronal activity and dopamine release. Combining optogenetics, slice electrophysiology and pharmacological approaches, we further show that mesDA-rich grafts modulate host glutamatergic synaptic transmission onto striatal medium spiny neurons in a manner reminiscent of endogenous mesDA neurons. Thus, application of optogenetics in cell therapy can link transplantation, animal behavior and postmortem analysis to enable the identification of mechanisms that drive recovery.


Asunto(s)
Diferenciación Celular/genética , Neuronas Dopaminérgicas/trasplante , Optogenética/métodos , Enfermedad de Parkinson/genética , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/citología , Células Madre Embrionarias Humanas/citología , Humanos , Mesencéfalo/citología , Mesencéfalo/trasplante , Ratones , Células-Madre Neurales/trasplante , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia , Transmisión Sináptica/genética
11.
Stem Cells Transl Med ; 3(1): 108-13, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24311700

RESUMEN

There has been considerable progress in obtaining engraftable embryonic stem (ES) cell-derived midbrain dopamine neurons for cell replacement therapy in models of Parkinson's disease; however, limited integration and striatal reinnervation of ES-derived grafts remain a major challenge for future clinical translation. In this paper, we show that enhanced expression of polysialic acid results in improved graft efficiency in correcting behavioral deficits in Parkinsonian mice. This result is accompanied by two potentially relevant cellular changes: greater survival of transplanted ES-derived dopamine neurons and robust sprouting of tyrosine hydroxylase-positive processes into host tissue. Because the procedures used to enhance polysialic acid are easily translated to other cell types and species, this approach may represent a general strategy to improve graft integration in cell-based therapies.


Asunto(s)
Neuronas Dopaminérgicas/citología , Células Madre Embrionarias/citología , Células-Madre Neurales/citología , Trastornos Parkinsonianos/terapia , Ácidos Siálicos/biosíntesis , Animales , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Dopamina/metabolismo , Ratones , Neuritas/fisiología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Fenotipo , Ácidos Siálicos/metabolismo , Sialiltransferasas/genética , Sialiltransferasas/metabolismo
12.
Cell Rep ; 8(6): 1677-1685, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25242333

RESUMEN

The long-term risk of malignancy associated with stem cell therapies is a significant concern in the clinical application of this exciting technology. We report a cancer-selective strategy to enhance the safety of stem cell therapies. Briefly, using a cell engineering approach, we show that aggressive cancers derived from human or murine induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) are strikingly sensitive to temporary MYC blockade. On the other hand, differentiated tissues derived from human or mouse iPSCs can readily tolerate temporary MYC inactivation. In cancer cells, endogenous MYC is required to maintain the metabolic and epigenetic functions of the embryonic and cancer-specific pyruvate kinase M2 isoform (PKM2). In summary, our results implicate PKM2 in cancer's increased MYC dependence and indicate dominant MYC inhibition as a cancer-selective fail-safe for stem cell therapies.


Asunto(s)
Ingeniería Celular , Tratamiento Basado en Trasplante de Células y Tejidos/normas , Células Madre Pluripotentes Inducidas/citología , Animales , Proteínas Portadoras/metabolismo , Línea Celular , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/diagnóstico por imagen , Femenino , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Imagen por Resonancia Magnética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Neoplasias/terapia , Neurogénesis , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Radiografía , Hormonas Tiroideas/metabolismo , Proteínas de Unión a Hormona Tiroide
13.
Cell Rep ; 5(5): 1387-402, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24290755

RESUMEN

Cranial placodes are embryonic structures essential for sensory and endocrine organ development. Human placode development has remained largely inaccessible despite the serious medical conditions caused by the dysfunction of placode-derived tissues. Here, we demonstrate the efficient derivation of cranial placodes from human pluripotent stem cells. Timed removal of the BMP inhibitor Noggin, a component of the dual-SMAD inhibition strategy of neural induction, triggers placode induction at the expense of CNS fates. Concomitant inhibition of fibroblast growth factor signaling disrupts placode derivation and induces surface ectoderm. Further fate specification at the preplacode stage enables the selective generation of placode-derived trigeminal ganglia capable of in vivo engraftment, mature lens fibers, and anterior pituitary hormone-producing cells that upon transplantation produce human growth hormone and adrenocorticotropic hormone in vivo. Our results establish a powerful experimental platform to study human cranial placode development and set the stage for the development of human cell-based therapies in sensory and endocrine disease.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Células Madre Embrionarias/citología , Células Endocrinas/citología , Neuronas/citología , Células Madre Pluripotentes/citología , Hormona Adrenocorticotrópica/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/trasplante , Células Endocrinas/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Estratos Germinativos/citología , Hormona del Crecimiento/metabolismo , Humanos , Cristalino/citología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neuronas/metabolismo , Periferinas/genética , Periferinas/metabolismo , Hipófisis/citología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/trasplante , Ganglio del Trigémino/citología
14.
Cell Stem Cell ; 12(5): 559-72, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23642365

RESUMEN

Human pluripotent stem cells are a powerful tool for modeling brain development and disease. The human cortex is composed of two major neuronal populations: projection neurons and local interneurons. Cortical interneurons comprise a diverse class of cell types expressing the neurotransmitter GABA. Dysfunction of cortical interneurons has been implicated in neuropsychiatric diseases, including schizophrenia, autism, and epilepsy. Here, we demonstrate the highly efficient derivation of human cortical interneurons in an NKX2.1::GFP human embryonic stem cell reporter line. Manipulating the timing of SHH activation yields three distinct GFP+ populations with specific transcriptional profiles, neurotransmitter phenotypes, and migratory behaviors. Further differentiation in a murine cortical environment yields parvalbumin- and somatostatin-expressing neurons that exhibit synaptic inputs and electrophysiological properties of cortical interneurons. Our study defines the signals sufficient for modeling human ventral forebrain development in vitro and lays the foundation for studying cortical interneuron involvement in human disease pathology.


Asunto(s)
Diferenciación Celular , Corteza Cerebral/citología , Células Madre Embrionarias/citología , Interneuronas/citología , Animales , Ciclo Celular , Linaje de la Célula , Movimiento Celular , Células Madre Embrionarias/metabolismo , Potenciales Postsinápticos Excitadores , Células Nutrientes/citología , Células Nutrientes/metabolismo , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Potenciales Postsinápticos Inhibidores , Interneuronas/metabolismo , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Proteínas Nucleares/metabolismo , Fenotipo , Transducción de Señal , Sinapsis/metabolismo , Factor Nuclear Tiroideo 1 , Factores de Tiempo , Factores de Transcripción/metabolismo , Proteínas Wnt/metabolismo
15.
Cell Stem Cell ; 13(6): 691-705, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24315443

RESUMEN

Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) resets their identity back to an embryonic age and, thus, presents a significant hurdle for modeling late-onset disorders. In this study, we describe a strategy for inducing aging-related features in human iPSC-derived lineages and apply it to the modeling of Parkinson's disease (PD). Our approach involves expression of progerin, a truncated form of lamin A associated with premature aging. We found that expression of progerin in iPSC-derived fibroblasts and neurons induces multiple aging-related markers and characteristics, including dopamine-specific phenotypes such as neuromelanin accumulation. Induced aging in PD iPSC-derived dopamine neurons revealed disease phenotypes that require both aging and genetic susceptibility, such as pronounced dendrite degeneration, progressive loss of tyrosine hydroxylase (TH) expression, and enlarged mitochondria or Lewy-body-precursor inclusions. Thus, our study suggests that progerin-induced aging can be used to reveal late-onset age-related disease features in hiPSC-based disease models.


Asunto(s)
Envejecimiento/patología , Células Madre Pluripotentes Inducidas/metabolismo , Modelos Biológicos , Proteínas Nucleares/metabolismo , Precursores de Proteínas/metabolismo , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Reprogramación Celular , Senescencia Celular , Niño , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Neuronas Dopaminérgicas/trasplante , Neuronas Dopaminérgicas/ultraestructura , Fibroblastos/metabolismo , Humanos , Lamina Tipo A , Mesencéfalo/patología , Ratones , Persona de Mediana Edad , Enfermedad de Parkinson/patología , Fenotipo , Donantes de Tejidos
16.
J Clin Invest ; 122(8): 2928-39, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22751106

RESUMEN

Embryonic stem cells (ESCs) represent a promising source of midbrain dopaminergic (DA) neurons for applications in Parkinson disease. However, ESC-based transplantation paradigms carry a risk of introducing inappropriate or tumorigenic cells. Cell purification before transplantation may alleviate these concerns and enable identification of the specific DA neuron stage most suitable for cell therapy. Here, we used 3 transgenic mouse ESC reporter lines to mark DA neurons at 3 stages of differentiation (early, middle, and late) following induction of differentiation using Hes5::GFP, Nurr1::GFP, and Pitx3::YFP transgenes, respectively. Transplantation of FACS-purified cells from each line resulted in DA neuron engraftment, with the mid-stage and late-stage neuron grafts being composed almost exclusively of midbrain DA neurons. Mid-stage neuron cell grafts had the greatest amount of DA neuron survival and robustly induced recovery of motor deficits in hemiparkinsonian mice. Our data suggest that the Nurr1+ stage (middle stage) of neuronal differentiation is particularly suitable for grafting ESC-derived DA neurons. Moreover, global transcriptome analysis of progeny from each of the ESC reporter lines revealed expression of known midbrain DA neuron genes and also uncovered previously uncharacterized midbrain genes. These data demonstrate remarkable fate specificity of ESC-derived DA neurons and outline a sequential stage-specific ESC reporter line paradigm for in vivo gene discovery.


Asunto(s)
Neuronas Dopaminérgicas/trasplante , Células Madre Embrionarias/trasplante , Células-Madre Neurales/trasplante , Animales , Diferenciación Celular , Línea Celular , Separación Celular/métodos , Supervivencia Celular , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Genes Reporteros , Supervivencia de Injerto , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Mesencéfalo/citología , Mesencéfalo/metabolismo , Ratones , Ratones Transgénicos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transcriptoma
17.
Cell Stem Cell ; 8(6): 695-706, 2011 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-21624813

RESUMEN

The use of pluripotent stem cells in regenerative medicine and disease modeling is complicated by the variation in differentiation properties between lines. In this study, we characterized 13 human embryonic stem cell (hESC) and 26 human induced pluripotent stem cell (hiPSC) lines to identify markers that predict neural differentiation behavior. At a general level, markers previously known to distinguish mouse ESCs from epiblast stem cells (EPI-SCs) correlated with neural differentiation behavior. More specifically, quantitative analysis of miR-371-3 expression prospectively identified hESC and hiPSC lines with differential neurogenic differentiation propensity and in vivo dopamine neuron engraftment potential. Transient KLF4 transduction increased miR-371-3 expression and altered neurogenic behavior and pluripotency marker expression. Conversely, suppression of miR-371-3 expression in KLF4-transduced cells rescued neural differentiation propensity. miR-371-3 expression level therefore appears to have both a predictive and a functional role in determining human pluripotent stem cell neurogenic differentiation behavior.


Asunto(s)
Diferenciación Celular/genética , MicroARNs/genética , Células-Madre Neurales/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Factor 4 Similar a Kruppel , Células-Madre Neurales/metabolismo , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Exp Neurol ; 199(1): 77-91, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-15916762

RESUMEN

Most regions of the mature mammalian brain, including the cerebral cortex, appear to be unable to support the genesis of new neurons. Here, we report that a low level of neurogenesis occurs in the cerebral cortex of the infant mouse brain and is enhanced by chronic perinatal hypoxia. When mice were reared in a low-oxygen environment from postnatal days 3 to 11, approximately 30% of the cortical neurons were lost after the insult; yet this damage was transient. The loss of cortical neuron number, cortical volume, and brain weight were all reversed during the recovery period. At P18, 7 days after the cessation of hypoxia, there was a marked increase in astroglial cell proliferation within the SVZ, as assessed by 5-bromodeoxyuridine (BrdU) incorporation in S-phase cells. One month after BrdU incorporation, 40% more BrdU-positive cells were found in the cerebral cortex of hypoxic-reared as compared to normoxic control mice. Among these newly generated cortical cells, approximately 45% were oligodendrocytes, 35% were astrocytes, and 10% were neurons in both hypoxic and normoxic mice. However, twice as many BrdU-labeled cells expressed neuronal markers in the neocortex in mice recovering from hypoxia as compared to controls. In both hypoxic-reared and normoxic infant/juvenile mice, putative neuroblasts could be seen detaching from the forebrain subventricular zone, migrating through the subcortical white matter and entering the lower cortical layers, 5 to 11 days after their last mitotic division. We suggest that cortical neurogenesis may play a significant role in repairing neuronal losses after neonatal injury.


Asunto(s)
Corteza Cerebral/patología , Hipoxia/patología , Hipoxia/fisiopatología , Neuronas/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Bromodesoxiuridina/metabolismo , Recuento de Células/métodos , Diferenciación Celular/fisiología , Proliferación Celular , Tamaño de la Célula , Corteza Cerebral/crecimiento & desarrollo , Ventrículos Cerebrales/fisiología , Proteínas ELAV/metabolismo , Inmunohistoquímica/métodos , Indoles , Ratones , Ratones Endogámicos C57BL , Fosfopiruvato Hidratasa/metabolismo , Factores de Tiempo , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA