Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pflugers Arch ; 474(4): 447-454, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34623515

RESUMEN

This study describes the interaction between CaV3.2 calcium channels and the receptor for activated C kinase 1 (Rack-1), a scaffold protein which has recently been implicated in neuropathic pain. The coexpression of CaV3.2 and Rack-1 in tsA-201 cells led to a reduction in the magnitude of whole-cell CaV3.2 currents and CaV3.2 channel expression at the plasma membrane. Co-immunoprecipitations from transfected cells show the formation of a molecular protein complex between Cav3.2 channels and Rack-1. We determined that the interaction of Rack-1 occurs at the intracellular II-III loop and the C-terminus of the channel. Finally, the coexpression of PKCßII abolished the effect of Rack-1 on current densities. Altogether, our findings show that Rack-1 regulates CaV3.2-mediated calcium entry in a PKC-dependent manner.


Asunto(s)
Canales de Calcio Tipo T , Neuralgia , Canales de Calcio Tipo T/metabolismo , Membrana Celular/metabolismo , Humanos , Receptores de Cinasa C Activada/metabolismo
2.
Am J Hum Genet ; 103(5): 666-678, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30343943

RESUMEN

Developmental and epileptic encephalopathies (DEEs) are severe neurodevelopmental disorders often beginning in infancy or early childhood that are characterized by intractable seizures, abundant epileptiform activity on EEG, and developmental impairment or regression. CACNA1E is highly expressed in the central nervous system and encodes the α1-subunit of the voltage-gated CaV2.3 channel, which conducts high voltage-activated R-type calcium currents that initiate synaptic transmission. Using next-generation sequencing techniques, we identified de novo CACNA1E variants in 30 individuals with DEE, characterized by refractory infantile-onset seizures, severe hypotonia, and profound developmental impairment, often with congenital contractures, macrocephaly, hyperkinetic movement disorders, and early death. Most of the 14, partially recurring, variants cluster within the cytoplasmic ends of all four S6 segments, which form the presumed CaV2.3 channel activation gate. Functional analysis of several S6 variants revealed consistent gain-of-function effects comprising facilitated voltage-dependent activation and slowed inactivation. Another variant located in the domain II S4-S5 linker results in facilitated activation and increased current density. Five participants achieved seizure freedom on the anti-epileptic drug topiramate, which blocks R-type calcium channels. We establish pathogenic variants in CACNA1E as a cause of DEEs and suggest facilitated R-type calcium currents as a disease mechanism for human epilepsy and developmental disorders.


Asunto(s)
Canales de Calcio Tipo R/genética , Proteínas de Transporte de Catión/genética , Contractura/genética , Discinesias/genética , Epilepsia/genética , Variación Genética/genética , Megalencefalia/genética , Espasmos Infantiles/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Trastornos del Neurodesarrollo/genética
3.
Bioorg Med Chem ; 28(11): 115491, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32327350

RESUMEN

In our previous work, a series of 2-amino-3,4-dihydroquinazoline derivativesusing an electron acceptor group was reported to be potent T-type calcium channel blockers and exhibit strong cytotoxic effects against various cancerous cell lines. To investigate the role of the guanidine moiety in the 2-amino-3,4-dihydroquinazoline scaffold as a pharmacophore for dual biological activity, a new series of 2-thio-3,4-dihydroquniazoline derivatives using an electron donor group at the C2-position was synthesized and evaluated for T-type calcium channel blocking activity and cytotoxic effects against two human cancerous cell lines (lung cancer A549 and colon cancer HCT-116). Among them, compound 6g showed potent inhibition of Cav3.2 currents (83% inhibition) at 10 µM concentrations. The compound also exhibited IC50 values of 5.0 and 6.4 µM against A549 and HCT-116 cell lines, respectively, which are comparable to the parental lead compound KYS05090. These results indicate that the isothiourea moiety similar to the guanidine moiety of 2-amino-3,4-dihydroquinazoline derivatives may be an essential pharmacophore for the desired biological activities. Therefore, our preliminary work can provide the opportunity to expand a chemical repertoire to improve affinity and selectivity for T-type calcium channels.


Asunto(s)
Antineoplásicos/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/metabolismo , Quinazolinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Bloqueadores de los Canales de Calcio/síntesis química , Bloqueadores de los Canales de Calcio/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Quinazolinas/síntesis química , Quinazolinas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
4.
Bioorg Chem ; 91: 103187, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31419643

RESUMEN

1,4-Dihydropyridines (DHPs) are an important class of blockers targeting different calcium channel subtypes and have great therapeutic value against cardiovascular and neurophysiologic conditions. Here, we present the design of DHP-based hexahydroquinoline derivatives as either selective or covalent inhibitors of calcium channels. These compounds were synthesized via a modified Hantzsch reaction under microwave irradiation and characterized by IR, 1H NMR, 13C NMR and mass spectra. Additionally, the proposed structure of HM12 was resolved by single crystal X-ray analysis. The abilities of the target compounds to block both L- and T-type calcium channels were evaluated by utilizing the whole-cell patch clamp technique. Our results identified covalent inhibitors of calcium channels for the first time, which could be achieved by introducing a Michael acceptor group into the ester side chain of the compounds. The proposed covalent binding between the compounds and the cysteine amino acid (Cys1492) within the DHP binding pocket of L-type calcium channel was supported by docking and pharmacophore analysis as well as a glutathione reactivity assay.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/química , Canales de Calcio Tipo T/química , Dihidropiridinas/farmacología , Descubrimiento de Drogas , Glutatión/metabolismo , Sitios de Unión , Calcio/metabolismo , Cisteína/química , Cisteína/metabolismo , Humanos , Modelos Moleculares , Conformación Proteica
7.
J Neurosci ; 35(38): 13133-47, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26400943

RESUMEN

Night blindness can result from impaired photoreceptor function and a subset of cases have been linked to dysfunction of Cav1.4 calcium channels and in turn compromised synaptic transmission. Here, we show that active zone proteins RIM1/2 are important regulators of Cav1.4 channel function in mouse rod photoreceptors and thus synaptic activity. The conditional double knock-out (cdko) of RIM1 and RIM2 from rods starting a few weeks after birth did not change Cav1.4 protein expression at rod ribbon synapses nor was the morphology of the ribbon altered. Heterologous overexpression of RIM2 with Cav1.4 had no significant influence on current density when examined with BaCl2 as the charge carrier. Nonetheless, whole-cell voltage-clamp recordings from cdko rods revealed a profound reduction in Ca(2+) currents. Concomitantly, we observed a 4-fold reduction in spontaneous miniature release events from the cdko rod terminals and an almost complete absence of evoked responses when monitoring changes in membrane incorporation after strong step depolarizations. Under control conditions, 49 and 83 vesicles were released with 0.2 and 1 s depolarizations, respectively, which is close to the maximal number of vesicles estimated to be docked at the base of the ribbon active zone, but without RIM1/2, only a few vesicles were stimulated for release after a 1 s stimulation. In conclusion, our study shows that RIM1/2 potently enhance the influx of Ca(2+) into rod terminals through Cav1.4 channels, which is vitally important for the release of vesicles from the rod ribbon. Significance statement: Active zone scaffolding proteins are thought to bring multiple components involved in Ca(2+)-dependent exocytosis into functional interactions. We show that removal of scaffolding proteins RIM1/2 from rod photoreceptor ribbon synapses causes a dramatic loss of Ca(2+) influx through Cav1.4 channels and a correlated reduction in evoked release, yet the channels remain localized to synaptic ribbons in a normal fashion. Our findings strongly argue that RIM1/2 facilitate Ca(2+) entry and in turn Ca(2+) evoked release by modulating Cav1.4 channel openings; however, RIM1/2 are not needed for the retention of Cav1.4 at the synapse. In summary, a key function of RIM1/2 at rod ribbons is to enhance Cav1.4 channel activity, possibly through direct or indirect modulation of the channel.


Asunto(s)
Fenómenos Biofísicos/genética , Canales de Calcio/metabolismo , Calcio/metabolismo , Proteínas de Unión al GTP/metabolismo , Regulación de la Expresión Génica/genética , Células Fotorreceptoras Retinianas Bastones/fisiología , Proteínas de Unión al GTP rab3/metabolismo , Animales , Ácido Aspártico/farmacología , Compuestos de Bario/farmacología , Fenómenos Biofísicos/efectos de los fármacos , Canales de Calcio/genética , Canales de Calcio Tipo L , Cloruros/farmacología , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Proteínas de Unión al GTP/genética , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Retina/citología , Células Fotorreceptoras Retinianas Bastones/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura , Proteínas de Unión al GTP rab3/genética
8.
Pflugers Arch ; 468(4): 635-42, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26706850

RESUMEN

We report expression system-dependent effects of heterozygous mutations (P769L and A1059S) in the Cav3.2 CACNA1H gene identified in a pediatric patient with chronic pain and absence seizures. The mutations were introduced individually into recombinant channels and then analyzed by means of electrophysiology. When both mutants were co-expressed in tsA-201 cells, we observed a loss of channel function, with significantly smaller current densities across a wide range of voltages (-40 to +20 mV). In addition, when both mutant channels were co-expressed, the channels opened at a more depolarizing potential with a ~5-mV right shift in the half-activation potential, with no changes in half-inactivation potential and the rate of recovery from inactivation. Interestingly, when both mutants were co-expressed in the neuronal-derived CAD cells in a different extracellular milieu, the effect was remarkably different. Although not statistically significant (p < 0.07), current densities appeared augmented compared to wild-type channels and the difference in the half-activation potential was lost. This could be attributed to the replacement of extracellular sodium and potassium with tetraethylammonium chloride. Our results show that experimental conditions can be a confounding factor in the biophysical effects of T-type calcium channel mutations found in certain neurological disorders.


Asunto(s)
Canales de Calcio Tipo T/genética , Dolor Crónico/genética , Epilepsia Tipo Ausencia/genética , Activación del Canal Iónico , Mutación Missense , Potenciales de Acción , Adolescente , Canales de Calcio Tipo T/metabolismo , Dolor Crónico/complicaciones , Dolor Crónico/metabolismo , Epilepsia Tipo Ausencia/complicaciones , Epilepsia Tipo Ausencia/metabolismo , Femenino , Células HEK293 , Humanos
9.
Pflugers Arch ; 466(11): 2113-26, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24566975

RESUMEN

Microtubule-associated protein B is a cytoskeleton protein consisting of heavy and light (LC) chains that play important roles in the regulation of neuronal morphogenesis and function. LC1 is also well known to interact with diverse ionotropic receptors at postsynapse. Much less is known, however, regarding the role of LC1 at presynaptic level where voltage-gated N-type Ca(2+) channels couple membrane depolarization to neurotransmitter release. Here, we investigated whether LC1 interacts with the N-type channels. Co-localization analysis revealed spatial proximity of the two proteins in hippocampal neurons. The interaction between LC1 and the N-type channel was demonstrated using co-immunoprecipitation experiments and in vitro pull-down assays. Detailed biochemical analysis suggested that the interaction occurs through the N-terminal of LC1 and the C-terminal of the pore-forming CaVα1 subunit of the channels. Patch-clamp studies in HEK-293 cells revealed a significant decrease in N-type currents upon LC1 expression, without apparent changes in kinetics. Recordings performed in the presence of MG132 prevented the actions of LC1 suggesting enhanced channel proteasomal degradation. Interestingly, using the yeast two-hybrid system and immunoprecipitation assays in HEK-293 cells, we revealed an interaction between LC1 and the ubiquitin-conjugating enzyme UBE2L3. Furthermore, we found that the LC1/UBE2L3 complex could interact with the N-type channels, suggesting that LC1 may act as a scaffold protein to increase UBE2L3-mediated channel ubiquitination. Together these results revealed a novel functional coupling between LC1 and the N-type channels.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Membrana Celular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación/fisiología , Células Cultivadas , Células HEK293 , Hipocampo/metabolismo , Humanos , Inmunoprecipitación/métodos , Neuronas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Técnicas del Sistema de Dos Híbridos , Ubiquitina/metabolismo
10.
Cell Rep Med ; 5(2): 101425, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38382469

RESUMEN

Progressive myoclonus epilepsy type 7, a debilitating neurological disorder, is caused by a loss-of-function mutation in the KV3.1 channel. Exciting work by Feng et al.1 utilizes a new knockin mouse model to identify a potential therapeutic intervention.


Asunto(s)
Epilepsias Mioclónicas Progresivas , Animales , Ratones , Epilepsias Mioclónicas Progresivas/genética , Mutación
11.
iScience ; 27(6): 109973, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38827405

RESUMEN

N- and P/Q-type voltage-gated Ca2+ channels are critical for synaptic transmission. While their expression is increased in the dorsal root ganglion (DRG) neuron cell bodies during neuropathic pain conditions, less is known about their synaptic remodeling. Here, we combined genetic tools with 2-photon Ca2+ imaging to explore the functional remodeling that occurs in central presynaptic terminals of DRG neurons during neuropathic pain. We imaged GCaMP6s fluorescence responses in an ex vivo spinal cord preparation from mice expressing GCaMP6s in Trpv1-Cre lineage nociceptors. We show that Ca2+ transient amplitude is increased in central terminals of these neurons after spared nerve injury, and that this increase is mediated by both N- and P/Q-type channels. We found that GABA-B receptor-dependent inhibition of Ca2+ transients was potentiated in the superficial layer of the dorsal horn. Our results provide direct evidence toward nerve injury-induced functional remodeling of presynaptic Ca2+ channels in Trpv1-lineage nociceptor terminals.

12.
Biomed Pharmacother ; 174: 116472, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531121

RESUMEN

The Voltage-Gated Calcium Channel (VGCC) auxiliary subunit Cavα2δ-1 (CACNA2D1) is the target/receptor of gabapentinoids which are known therapeutics in epilepsy and neuropathic pain. Following damage to the peripheral sensory nervous system, Cavα2δ-1 is upregulated in dorsal root ganglion (DRG) neurons in several animal models of chronic neuropathic pain. Gabapentinoids, such as gabapentin and pregabalin, engage with Cavα2δ-1 via binding an arginine residue (R241) within an RRR motif located at the N-terminus of human Cavα2δ-1. A novel, next generation gabapentinoid, engineered not to penetrate the brain, was able to generate a strong analgesic response in Chronic Constriction Injury animal model of chronic neuropathic pain and showed binding specificity for Cavα2δ-1 versus the Cavα2δ-2 subunit. This novel non-brain penetrant gabapentinoid, binds to R241 and a novel binding site on Cavα2δ-1, which is located within the VGCC_α2 domain, identified as a lysine residue within an IKAK amino acid motif (K634). The overall whole cell current amplitudes were diminished by the compound, with these inhibitory effects being diminished in R241A mutant Cavα2δ-1 subunits. The functional effects occurred at lower concentrations than those needed for inhibition by gabapentin or pregabalin, which apparently bound the Cavα2δ-1 subunit only on the R241 and not on the K634 residue. Our work sets the stage for the identification and characterisation of novel compounds with therapeutic properties in neuropathic pain and possibly in other disorders and conditions which require engagement of the Cavα2δ-1 target.


Asunto(s)
Canales de Calcio Tipo L , Neuralgia , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Animales , Ligandos , Humanos , Masculino , Canales de Calcio/metabolismo , Canales de Calcio/genética , Gabapentina/farmacología , Ratas Sprague-Dawley , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Ratas , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo N/metabolismo , Canales de Calcio Tipo N/genética , Analgésicos/farmacología , Modelos Animales de Enfermedad , Pregabalina/farmacología
13.
Mol Brain ; 17(1): 54, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113108

RESUMEN

NVA1309 is a non-brain penetrant next-generation gabapentinoid shown to bind Cavα2δ at R243 within a triple Arginine motif forming the binding site for gabapentin and pregabalin. In this study we have compared the effects of NVA1309 with Mirogabalin, a gabapentinoid drug with higher affinity for the voltage-gated calcium channel subunit Cavα2δ-1 than pregabalin which is approved for post-herpetic neuralgia in Japan, Korea and Taiwan. Both NVA1309 and mirogabalin inhibit Cav2.2 currents in vitro and decrease Cav2.2 plasma membrane expression with higher efficacy than pregabalin. Mutagenesis of the classical binding residue arginine R243 and the newly identified binding residue lysine K615 reverse the effect of mirogabalin on Cav2.2 current, but not that of NVA1309.


Asunto(s)
Gabapentina , Humanos , Gabapentina/farmacología , Animales , Unión Proteica , Subunidades de Proteína/metabolismo , Subunidades de Proteína/química , Células HEK293 , Ácido gamma-Aminobutírico/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Canales de Calcio Tipo N/metabolismo , Canales de Calcio Tipo N/genética , Pregabalina/farmacología , Canales de Calcio/metabolismo , Compuestos Bicíclicos con Puentes
14.
Biochim Biophys Acta ; 1818(3): 551-8, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22198390

RESUMEN

Stimulus-secretion coupling is a complex set of intracellular reactions initiated by an external stimulus that result in the release of hormones and neurotransmitters. Under physiological conditions this signaling process takes a few milliseconds, and to minimize delays cells have developed a formidable integrated network, in which the relevant molecules are tightly packed on the nanometer scale. Active zones, the sites of release, are composed of several different proteins including voltage-gated Ca(2+) (Ca(V)) channels. It is well acknowledged that hormone and neurotransmitter release is initiated by the activation of these channels located close to docked vesicles, though the mechanisms that enrich channels at release sites are largely unknown. Interestingly, Rab3 binding proteins (RIMs), a diverse multidomain family of proteins that operate as effectors of the small G protein Rab3 involved in secretory vesicle trafficking, have recently identified as binding partners of Ca(V) channels, placing both proteins in the center of an interaction network in the molecular anatomy of the active zones that influence different aspects of secretion. Here, we review recent evidences providing support for the notion that RIMs directly bind to the pore-forming and auxiliary ß subunits of Ca(V) channels and with RIM-binding protein, another interactor of the channels. Through these interactions, RIMs regulate the biophysical properties of the channels and their anchoring relative to active zones, significantly influencing hormone and neurotransmitter release.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Neurotransmisores/metabolismo , Vesículas Secretoras/metabolismo , Proteínas de Unión al GTP rab3/metabolismo , Animales , Transporte Biológico Activo/fisiología , Humanos
15.
Biochim Biophys Acta ; 1822(8): 1238-46, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22549042

RESUMEN

Familial hemiplegic migraine type 1 (FHM-1) is a monogenic form of migraine with aura that is characterized by recurrent attacks of a typical migraine headache with transient hemiparesis during the aura phase. In a subset of patients, additional symptoms such as epilepsy and cerebellar ataxia are part of the clinical phenotype. FHM-1 is caused by missense mutations in the CACNA1A gene that encodes the pore-forming subunit of Ca(V)2.1 voltage-gated Ca(2+) channels. Although the functional effects of an increasing number of FHM-1 mutations have been characterized, knowledge on the influence of most of these mutations on G protein regulation of channel function is lacking. Here, we explored the effects of G protein-dependent modulation on mutations W1684R and V1696I which cause FHM-1 with and without cerebellar ataxia, respectively. Both mutations were introduced into the human Ca(V)2.1α(1) subunit and their functional consequences investigated after heterologous expression in human embryonic kidney 293 (HEK-293) cells using patch-clamp recordings. When co-expressed along with the human µ-opioid receptor, application of the agonist [d-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) inhibited currents through both wild-type (WT) and mutant Ca(V)2.1 channels, which is consistent with the known modulation of these channels by G protein-coupled receptors. Prepulse facilitation, which is a way to characterize the relief of direct voltage-dependent G protein regulation, was reduced by both FHM-1 mutations. Moreover, the kinetic analysis of the onset and decay of facilitation showed that the W1684R and V1696I mutations affect the apparent dissociation and reassociation rates of the Gßγ dimer from the channel complex, suggesting that the G protein-Ca(2+) channel affinity may be altered by the mutations. These biophysical studies may shed new light on the pathophysiology underlying FHM-1.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/metabolismo , Proteínas de Unión al GTP/metabolismo , Trastornos Migrañosos/genética , Trastornos Migrañosos/metabolismo , Animales , Canales de Calcio Tipo N/genética , Línea Celular , Proteínas de Unión al GTP/genética , Estudio de Asociación del Genoma Completo , Genotipo , Células HEK293 , Humanos , Activación del Canal Iónico , Ratones , Mutación , Ratas , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Transfección
16.
Cephalalgia ; 33(6): 398-407, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23430985

RESUMEN

BACKGROUND: Familial hemiplegic migraine type 1 (FHM-1) is an autosomal dominant form of migraine with aura characterized by recurrent migraine, hemiparesis and ataxia. FHM-1 has been linked to missense mutations in the CACNA1A gene encoding the pore-forming subunit of the neuronal voltage-gated P/Q-type Ca(2+) channel (CaV2.1α1). METHODS: Here, we explored the effects of the FHM-1 K1336E mutation on G protein-dependent modulation of the recombinant P/Q-type channel. The mutation was introduced into the human CaV2.1α1 subunit and its functional consequences investigated after heterologous expression in HEK-293 cells using patch-clamp recordings. RESULTS: Functional analysis of the K1336E mutation revealed a reduction of Ca(2+) current densities, a ∼10 mV left-shift in the current-voltage relationship, and the slowing of current inactivation kinetics. When co-expressed along with the human µ-opioid receptor, application of the agonist DAMGO inhibited whole-cell currents through both the wild-type and the mutant channels. Prepulse facilitation was also reduced by the K1336E mutation. Likewise, the kinetic analysis of the onset and decay of facilitation showed that the mutation affects the apparent dissociation and reassociation rates of the Gßγ dimer from the channel complex. CONCLUSIONS: These results suggest that the extent of G-protein-mediated inhibition is significantly reduced in the K1336E mutant CaV2.1 Ca(2+) channels. This alteration would contribute to render the neuronal network hyperexcitable, possibly as a consequence of reduced presynaptic inhibition, and may help to explain some aspects of the FHM-1 pathophysiology.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Canales de Calcio/genética , Proteínas de Unión al GTP/metabolismo , Neuronas/metabolismo , Canales de Calcio Tipo N/genética , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/metabolismo , Proteínas de Unión al GTP/genética , Células HEK293 , Humanos , Trastornos Migrañosos/genética , Trastornos Migrañosos/metabolismo , Mutación Missense , Técnicas de Placa-Clamp , Transfección
17.
Br J Pharmacol ; 180(12): 1616-1633, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36647671

RESUMEN

BACKGROUND AND PURPOSE: Cannabinoids are a promising therapeutic avenue for chronic pain. However, clinical trials often fail to report analgesic efficacy of cannabinoids. Inhibition of voltage gate calcium (Cav ) channels is one mechanism through which cannabinoids may produce analgesia. We hypothesized that cannabinoids and cannabinoid receptor agonists target different types of Cav channels through distinct mechanisms. EXPERIMENTAL APPROACH: Electrophysiological recordings from tsA-201 cells expressing either Cav 3.2 or Cav 2.2 were used to assess inhibition by HU-210 or cannabidiol (CBD) in the absence and presence of the CB1 receptor. Homology modelling assessed potential interaction sites for CBD in both Cav 2.2 and Cav 3.2. Analgesic effects of CBD were assessed in mouse models of inflammatory and neuropathic pain. KEY RESULTS: HU-210 (1 µM) inhibited Cav 2.2 function in the presence of CB1 receptor but had no effect on Cav 3.2 regardless of co-expression of CB1 receptor. By contrast, CBD (3 µM) produced no inhibition of Cav 2.2 and instead inhibited Cav 3.2 independently of CB1 receptors. Homology modelling supported these findings, indicating that CBD binds to and occludes the pore of Cav 3.2, but not Cav 2.2. Intrathecal CBD alleviated thermal and mechanical hypersensitivity in both male and female mice, and this effect was absent in Cav 3.2 null mice. CONCLUSION AND IMPLICATIONS: Our findings reveal differential modulation of Cav 2.2 and Cav 3.2 channels by CB1 receptors and CBD. This advances our understanding of how different cannabinoids produce analgesia through action at different voltage-gated calcium channels and could influence the development of novel cannabinoid-based therapeutics for treatment of chronic pain.


Asunto(s)
Cannabidiol , Cannabinoides , Dolor Crónico , Masculino , Femenino , Ratones , Animales , Cannabidiol/farmacología , Canales de Calcio , Dolor Crónico/tratamiento farmacológico , Analgésicos/farmacología , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo
18.
J Biol Chem ; 286(18): 15757-65, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21402706

RESUMEN

Insulin release by pancreatic ß-cells is regulated by diverse intracellular signals, including changes in Ca(2+) concentration resulting from Ca(2+) entry through voltage-gated (Ca(V)) channels. It has been reported that the Rab3 effector RIM1 acts as a functional link between neuronal Ca(V) channels and the machinery for exocytosis. Here, we investigated whether RIM1 regulates recombinant and native L-type Ca(V) channels (that play a key role in hormone secretion) and whether this regulation affects insulin release. Whole-cell patch clamp currents were recorded from HEK-293 and insulinoma RIN-m5F cells. RIM1 and Ca(V) channel expression was identified by RT-PCR and Western blot. RIM1-Ca(V) channel interaction was determined by co-immunoprecipitation. Knockdown of RIM1 and Ca(V) channel subunit expression were performed using small interference RNAs. Insulin release was assessed by ELISA. Co-expression of Ca(V)1.2 and Ca(V)1.3 L-type channels with RIM1 in HEK-293 cells revealed that RIM1 may not determine the availability of L-type Ca(V) channels but decreases the rate of inactivation of the whole cell currents. Co-immunoprecipitation experiments showed association of the Ca(V)ß auxiliary subunit with RIM1. The lack of Ca(V)ß expression suppressed channel regulation by RIM1. Similar to the heterologous system, an increase of current inactivation was observed upon knockdown of endogenous RIM1. Co-immunoprecipitation showed association of Ca(V)ß and RIM1 in insulin-secreting RIN-m5F cells. Knockdown of RIM1 notably impaired high K(+)-stimulated insulin secretion in the RIN-m5F cells. These data unveil a novel functional coupling between RIM1 and the L-type Ca(V) channels via the Ca(V)ß auxiliary subunit that contribute to determine insulin secretion.


Asunto(s)
Canales de Calcio Tipo L/biosíntesis , Proteínas de Unión al GTP/metabolismo , Regulación de la Expresión Génica/fisiología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Canales de Calcio Tipo L/genética , Línea Celular Tumoral , Proteínas de Unión al GTP/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Insulina/genética , Secreción de Insulina
19.
FEBS J ; 289(3): 614-633, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33576127

RESUMEN

Voltage-gated calcium (CaV ) channels and their regulation by proteins at the synaptic cleft play a critical role in neurotransmission. These interactions fine-tune the synaptic response through the regulation of Ca2+ entry into the presynaptic terminal and trigger the fusion of vesicles filled with neurotransmitters and peptides. Regulation of CaV channel intrinsic properties and their numbers at the active zones shape the timing and strength of synaptic function. Here, we provide an overview of a number of proteins reported to be part of CaV channel nanodomains at the synaptic cleft and the repercussions of these interactions for CaV channel trafficking, tethering at the active zone, and regulation of their biophysical properties. We summarize the current state of knowledge by which CaV channels are regulated at presynaptic sites.


Asunto(s)
Canales de Calcio/genética , Proteínas de Unión al Calcio/genética , Sinapsis/genética , Transmisión Sináptica/genética , Calcio/metabolismo , Señalización del Calcio/genética , Humanos , Neuronas/metabolismo , Terminales Presinápticos/metabolismo
20.
Pain ; 163(12): 2315-2325, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35467587

RESUMEN

ABSTRACT: Trigeminal neuralgia (TN) is a rare but debilitating disorder characterized by excruciating facial pain, with a higher incidence in women. Recent studies demonstrated that TN patients present mutations in the gene encoding the Ca V 3.2 T-type calcium channel, an important player in peripheral pain pathways. We characterize the role of Ca V 3.2 channels in TN at 2 levels. First, we examined the biophysical properties of CACNA1H variants found in TN patients. Second, we investigated the role of Ca V 3.2 in an animal model of trigeminal neuropathic pain. Whole-cell patch-clamp recordings from 4 different mutants expressed in tsA-201 cells (E286K in the pore loop of domain I, H526Y, G563R, and P566T in the domain I-II linker) identified a loss of function in activation in the E286K mutation and gain of function in the G563R and P566T mutations. Moreover, a loss of function in inactivation was observed with the E286K and H526Y mutations. Cell surface biotinylation revealed no difference in channel trafficking among the variants. The G563R mutant also caused a gain of function in the firing properties of transfected trigeminal ganglion neurons. In female and male mice, constriction of the infraorbital nerve induced facial thermal heat hyperalgesia. Block of T-type channels with Z944 resulted in antihyperalgesia. The effect of Z944 was absent in Ca V 3.2 -/- mice, indicating that Ca V 3.2 is the molecular target of the antihyperalgesic Z944 effect. Finally, enzyme-linked immunosorbent assay analysis revealed increased Ca V 3.2 channel expression in the spinal trigeminal subnucleus caudalis. Altogether, the present study demonstrates an important role of Ca V 3.2 channels in trigeminal pain.


Asunto(s)
Canales de Calcio Tipo T , Neuralgia del Trigémino , Animales , Femenino , Masculino , Ratones , Dolor Facial , Hiperalgesia , Ganglio del Trigémino/metabolismo , Neuralgia del Trigémino/genética , Canales de Calcio Tipo T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA