RESUMEN
We report detecting infectious Toscana virus in the seminal fluid of a 25-year-old man from Italy returning from Elba Island. The presence of infectious virus in human semen adds Toscana virus to the long list of viruses detected in this genital fluid and indicates a potential for sexual transmission.
Asunto(s)
Líquidos Corporales , Enfermedades Transmisibles , Virus de Nápoles de la Fiebre de la Mosca de los Arenales , Adulto , Feto , Humanos , Masculino , Virus de Nápoles de la Fiebre de la Mosca de los Arenales/genética , SemenRESUMEN
It is known that the non-structural protein (NSs) of Toscana virus (TOSV), an emergent sandfly-borne virus causing meningitis or more severe central nervous system injuries in humans, exerts its function triggering RIG-I for degradation in a proteasome-dependent manner, thus breaking off the IFN-ß production. The non-structural protein of different members of Bunyavirales has recently appeared as a fundamental protagonist in immunity evasion through ubiquitination-mediated protein degradation targets. We showed that TOSV NSs has an E3 ubiquitin ligase activity, mapping at the carboxy-terminal domain and also involving the amino-terminal of the protein. Indeed, neither the amino- (NSsΔN) nor the carboxy- (NSsΔC) terminal-deleted mutants of TOSV NSs were able to cause ubiquitin-mediated proteasome degradation of RIG-I. Moreover, the addition of the C-terminus of TOSV NSs to the homologous protein of the Sandfly Fever Naples Virus, belonging to the same genus and unable to inhibit IFN-ß activity, conferred new properties to this protein, favoring RIG-I ubiquitination and its degradation. NSs lost its antagonistic activity to IFN when one of the terminal residues was missing. Therefore, we showed that NSs could behave as an atypical RING between RING (RBR) E3 ubiquitin ligases. This is the first report which identified the E3 ubiquitin ligase activity in a viral protein among negative strand RNA viruses.
Asunto(s)
Infecciones por Bunyaviridae/metabolismo , Proteína 58 DEAD Box/metabolismo , Virus de Nápoles de la Fiebre de la Mosca de los Arenales/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Chlorocebus aethiops , Células HEK293 , Humanos , Receptores Inmunológicos , Células VeroRESUMEN
Data regarding antibody responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in patients infected with COVID-19 are not yet available. In this study, we aimed to evaluate serum antibody responses in patients regardless of the outcome. We measured the circulating immunoglobulin G (IgG) antibody levels in 60 subjects with a certified history of SARS-CoV-2 infection by using immunoenzymatic, chemiluminescent, and Neutralization assays. Half patients had a severe infection, the other half were pauci-symptomatic. We analyzed their antibody response to see the trend of the humoral response. Our results showed a significant difference in circulating IgG level among the two groups. The neutralizing antibody response against SARS-CoV-2 was significantly higher among those who had severe disease. Furthermore, ten subjects from each group were screened twice, and a declining antibody trend was observed in pauci-symptomatic individuals. These findings provide evidence that humoral immunity against SARS-CoV-2 in pauci-symptomatic people is weak and may not be long-lasting. This may have implications for immunity strategy and prevention, since it is still not clear whether a time-dependent decrease of both circulating and neutralizing antibodies to nonprotective levels could occur in a longer time span and whether potential vaccines are able to induce a herd immunity and a durable response.
Asunto(s)
Anticuerpos Antivirales/biosíntesis , Anticuerpos Antivirales/sangre , COVID-19/virología , SARS-CoV-2/inmunología , Adulto , Anciano , Animales , Anticuerpos Neutralizantes/sangre , Formación de Anticuerpos , COVID-19/inmunología , Chlorocebus aethiops , Humanos , Inmunidad Humoral , Inmunoglobulina G/sangre , Inmunoglobulina G/aislamiento & purificación , Persona de Mediana Edad , Pruebas de Neutralización , Células VeroRESUMEN
BACKGROUND: Convalescent plasma (CP) and hyperimmune plasma (HP) are passive immunotherapies consisting in the infusion of plasma from recovered people into infected patients. Following pre-existing evidence in many other viral diseases, such as SARS, MERS and Ebola, CP and HP have also been proposed for the treatment of COVID-19. Nevertheless, due to the lack of large, well-designed, clinical trials, no clear-cut guidelines exist about what subtype of patient CP and HP should be administered to. CASE PRESENTATION: We have reported the cases of 3 patients, all immunosuppressed and affected by non-severe, prolonged COVID-19. They were treated with HP, whose neutralizing titer was higher than 1/80. The first patient was a 55-year-old male, who had undergone lung transplant. He was under therapy with Tacrolimus and developed non-neutralizing antibodies against SARS-CoV2. The second patient was a 77-year-old female, affected by follicular lymphoma. She had tested positive for SARS-CoV2 after 6 months. The third was a 60-year-old patient, affected by chronic leukemia. He did not develop antibodies after 2-month disease. All 3 patients received HP and had tested negative for SARS-CoV2 within 2 weeks. CONCLUSION: Despite encouraging initial data, no strong evidence exist in support of CP and HP to treat COVID-19. In our experience, although limited due to the reduced number of patients, we found a good safety and efficacy of HP in 3 immuno-deficient subjects. Further data are needed in order to assess whether this subtype of patients may particularly benefit from passive immunization.
Asunto(s)
COVID-19/terapia , SARS-CoV-2 , Adulto , Anciano , Anticuerpos Antivirales , Femenino , Humanos , Inmunización Pasiva , Huésped Inmunocomprometido , Masculino , Persona de Mediana Edad , Plasma , ARN Viral , Resultado del Tratamiento , Sueroterapia para COVID-19RESUMEN
Hepatitis C virus (HCV) Core Antigen (HCVAg) and HCV-RNA were tested in 962 plasma/serum samples from 180 patients during Direct Antiviral Agents (DAAs) treatment and at follow-up. One hundred and eighty individuals were included: 71% carried advanced fibrosis and 43% were treatment-experienced. A Sustained Virological Response (SVR) was achieved in 166/180 (92%) individuals: 96/102 (94.1%) na ve and 70/78 (89.7%) treatment-experienced (p=0.20). The baseline median levels of HCV-RNA and HCVAg were not significantly different between individuals achieving SVR (5.92 x 105 IU/mL, IQR 5.4-6.4, and 3,417 fmol/L, 2,900-3,795) and those without SVR (6.06 x 105 IU/mL, 5.63-6.57, and 3,391 fmol/L, 2,828-4,077). The HCV-RNA vs. HCVAg assays results showed a fair correlation with an overall moderate qualitative agreement (kappa=0.52). Among treatment-failed individuals, at failure 100% of the assays results were positive for both techniques, with HCV-RNA median value 3.09 x 105 IU/mL (2.10-29.09) and HCVAg median value 1570.28 fmol/L (360.15-9317.67). Undetectable HCV-RNA at EOT showed sensitivity 54%, specificity 100%, negative predictive value (NPV) 93% and positive predictive value (PPV) 100%. Undetectable HCVAg at EOT showed sensitivity 74%, specificity 100%, NPV 97% and PPV 100%. The operative and economic advantages of the HCVAg support the alternative use of HCVAg to monitor DAAs treatment outcome.
Asunto(s)
Hepacivirus , Hepatitis C Crónica , Antivirales/uso terapéutico , Quimioterapia Combinada , Hepacivirus/genética , Antígenos de la Hepatitis C/uso terapéutico , Hepatitis C Crónica/tratamiento farmacológico , Humanos , ARN Viral , Ribavirina/uso terapéutico , Resultado del TratamientoAsunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Vacuna BNT162 , Vacunas contra la COVID-19/administración & dosificación , Relación Dosis-Respuesta Inmunológica , Humanos , Inmunogenicidad Vacunal , Inmunoglobulina G/sangreRESUMEN
Seasonal influenza A (IA) and B (IB) viruses co-circulate every year, causing respiratory tract infections in individuals of all ages. Recently, the association between laboratory-confirmed influenza infection and acute myocardial infarction has been clearly demonstrated. However, most of the reported cases of fulminant myocarditis had been associated with influenza virus type A infection. Here we report the case of a 44 y/o man who experienced myocarditis with cardiogenic shock [requiring percutaneous extracorporeal membrane oxygenation (ECMO) support], following influenza B virus infection, which circulated widely in Italy in 2017-18.
Asunto(s)
Oxigenación por Membrana Extracorpórea , Gripe Humana , Miocarditis , Adulto , Humanos , Gripe Humana/complicaciones , Italia , Masculino , Miocarditis/complicaciones , Miocarditis/terapia , Choque Cardiogénico/etiología , Choque Cardiogénico/terapiaRESUMEN
Respiratory syncytial virus (RSV) is a major cause of severe respiratory infections in children and elderly people, and no marketed vaccine exists. In this study, we generated and analyzed a subunit vaccine against RSV based on a novel genome replication-deficient Sendai virus (SeV) vector. We inserted the RSV F protein, known to be a genetically stable antigen, into our vector in a specific way to optimize the vaccine features. By exchanging the ectodomain of the SeV F protein for its counterpart from RSV, we created a chimeric vectored vaccine that contains the RSV F protein as an essential structural component. In this way, the antigen is actively expressed on the surfaces of vaccine particles in its prefusion conformation, and as recently reported for other vectored vaccines, the occurrence of silencing mutations of the transgene in the vaccine genome can be prevented. In addition, its active gene expression contributes to further stimulation of the immune response. In order to understand the best route of immunization, we compared vaccine efficacies after intranasal (i.n.) or intramuscular (i.m.) immunization of BALB/c mice. Via both routes, substantial RSV-specific immune responses were induced, consisting of serum IgG and neutralizing antibodies, as well as cytotoxic T cells. Moreover, i.n. immunization was also able to stimulate specific mucosal IgA in the upper and lower respiratory tract. In virus challenge experiments, animals were protected against RSV infection after both i.n. and i.m. immunization without inducing vaccine-enhanced disease. Above all, the replication-deficient SeV appeared to be safe and well tolerated.IMPORTANCE Respiratory syncytial virus (RSV) is a major cause of respiratory diseases in young children and elderly people worldwide. There is a great demand for a licensed vaccine. Promising existing vaccine approaches based on live-attenuated vaccines or viral vectors have suffered from unforeseen drawbacks related to immunogenicity and attenuation. We provide a novel RSV vaccine concept based on a genome replication-deficient Sendai vector that has many favorable vaccine characteristics. The specific vaccine design guarantees genetic stability of the transgene; furthermore, it supports a favorable presentation of the antigen, activating the adaptive response, features that other vectored vaccine approaches have often had difficulties with. Wide immunological and pathological analyses in mice confirmed the validity and efficacy of this approach after both parenteral and mucosal administration. Above all, this concept is suitable for initiating clinical studies, and it could also be applied to other infectious diseases.
Asunto(s)
Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/genética , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/genética , Virus Sendai/genética , Proteínas Virales de Fusión/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Femenino , Vectores Genéticos , Inmunización , Inmunoglobulina A/inmunología , Inmunoglobulina G/sangre , Ratones , Ratones Endogámicos BALB C , Infecciones por Virus Sincitial Respiratorio/virología , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Vacunas contra Virus Sincitial Respiratorio/química , Virus Sincitial Respiratorio Humano/inmunología , Virus Sincitial Respiratorio Humano/fisiología , Virus Sendai/inmunología , Vacunas Atenuadas , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/química , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Proteínas Virales de Fusión/genética , Replicación ViralRESUMEN
Toscana virus (TOSV) is a Phlebovirus responsible for human neurological infections in endemic Mediterranean areas. The main viral target is the central nervous system, with viremia as a way of dissemination throughout the host. This study was aimed at understanding the spread of TOSV in the host by identifying the cell population infected by the virus and the vehicle to the organs. In vivo studies provided evidence that endothelial cells are infected by TOSV, indicating their potential role in the diffusion of the virus following viremic spread. These results were further confirmed in vitro. Human peripheral mononuclear blood cells were infected with TOSV; only monocyte-derived dendritic cells were identified as susceptible to TOSV infection. Productive viral replication was then observed in human monocyte-derived dendritic cells (moDCs) and in human endothelial cells by recovery of the virus from a cell supernatant. Interleukin-6 was produced by both cell types upon TOSV infection, mostly by endothelial cells, while moDCs particularly expressed TNF-α, which is known to induce a long-lasting decrease in endothelial cell barrier function. These cells could therefore be implicated in the spread of the virus in the host and in the infection of tissues that are affected by the disease, such as the central nervous system. The identification of in vitro and in vivo TOSV cell targets is an important tool for understanding the pathogenesis of the infection, providing new insight into virus-cell interaction for improved knowledge and control of this viral disease.
Asunto(s)
Infecciones por Bunyaviridae/virología , Células Dendríticas/virología , Células Endoteliales/virología , Interacciones Huésped-Patógeno , Virus de Nápoles de la Fiebre de la Mosca de los Arenales/patogenicidad , Replicación Viral/genética , Animales , Infecciones por Bunyaviridae/metabolismo , Infecciones por Bunyaviridae/patología , Diferenciación Celular , Permeabilidad de la Membrana Celular , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/virología , Chlorocebus aethiops , Células Dendríticas/metabolismo , Células Endoteliales/metabolismo , Femenino , Humanos , Interleucina-6/biosíntesis , Ratones , Ratones Endogámicos BALB C , Monocitos/metabolismo , Monocitos/virología , Cultivo Primario de Células , Virus de Nápoles de la Fiebre de la Mosca de los Arenales/fisiología , Factor de Necrosis Tumoral alfa/biosíntesis , Células VeroRESUMEN
Thymidylate synthase (TS) poly-epitope peptide (TSPP) is a 27-mer peptide vaccine containing the amino acidic sequences of three epitopes with HLA-A2.1-binding motifs of TS, an enzyme overexpressed in cancer cells, which plays a crucial role in DNA repair and replication. Based on the results of preclinical studies, we designed a phase Ib trial (TSPP/VAC1) to investigate, in a dose escalation setting, the safety and the biological activity of TSPP vaccination alone (arm A) or in combination with GM-CSF and IL-2 (arm B) in cancer patients. Twenty-one pretreated metastatic cancer patients, with a good performance status (ECOG ≤ 1) and no severe organ failure or immunological disease, were enrolled in the study (12 in arm A, nine in arm B) between April 2011 and January 2012, with a median follow-up of 28 months. TSPP resulted safe, and its maximal tolerated dose was not achieved. No grade 4 toxicity was observed. The most common adverse events were grade 2 dermatological reactions to the vaccine injection, cough, rhinitis, fever, poly-arthralgia, gastro-enteric symptoms and, to a lesser extent, moderate hypertension and hypothyroidism. We detected a significant rise in auto-antibodies and TS-epitope-specific CTL precursors. Furthermore, TSPP showed antitumor activity in this group of pretreated patients; indeed, we recorded one partial response and seven disease stabilizations (SD) in arm A, and three SD in arm B. Taken together, our findings provide the framework for the evaluation of the TSPP anti-tumor activity in further disease-oriented clinical trials.
Asunto(s)
Vacunas contra el Cáncer/administración & dosificación , Neoplasias/terapia , Timidilato Sintasa/inmunología , Vacunas de Subunidad/administración & dosificación , Anciano , Vacunas contra el Cáncer/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/inmunología , Vacunas de Subunidad/inmunologíaRESUMEN
We present the case of a 76-year-old male patient persistently infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the setting of a stage IIIC cutaneous melanoma and non-Hodgkin's lymphoma (NHL). Due to the persistent coronavirus disease 19 (COVID-19), all cancer treatments were discontinued. Because of the worsening of his clinical state and the persistence of SARS-CoV-2 positivity for more than six months, the patient was treated with sotrovimab, which was ineffective due to resistance mutations acquired during that time. In order to resume cancer treatment and make the patient free from SARS-CoV-2, an in vitro screening of Evusheld monoclonal antibodies (tixagevumab-cilgavimab) against the viral strains isolated from the subject was performed. The promising results obtained during in vitro testing led to the authorization of the off-label use of Evusheld, which made the patient negative for SARS-CoV-2, thus, allowing him to resume his cancer treatment. This study highlights the Evusheld monoclonal antibodies' efficacy, not only in prevention but also in successful therapy against prolonged COVID-19. Therefore, testing neutralizing monoclonal antibodies in vitro against SARS-CoV-2 mutants directly isolated from patients could provide useful information for the treatment of people affected by long COVID.
Asunto(s)
COVID-19 , Melanoma , Neoplasias Cutáneas , Humanos , Masculino , Anciano , Síndrome Post Agudo de COVID-19 , SARS-CoV-2 , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéuticoRESUMEN
A weak production of INF-ß along with an exacerbated release of pro-inflammatory cytokines have been reported during infection by the novel SARS-CoV-2 virus. SARS-CoV-2 encodes several proteins that are able to counteract the host immune system, which is believed to be one of the most important features contributing to the viral pathogenesis and development of a severe clinical outcomes. Previous reports demonstrated that the SARS-CoV-2 ORF6 protein strongly suppresses INF-ß production by hindering the RIG-I, MDA-5, and MAVS signaling cascade. In the present study, we better characterized the mechanism by which the SARS-CoV-2 ORF6 counteracts IFN-ß and interleukin-6 (IL-6), which plays a crucial role in the inflammation process associated with the viral infection. In the present study, we demonstrated that the SARS-CoV-2 ORF6 protein has evolved an alternative mechanism to guarantee host IFN-ß and IL-6 suppression, in addition to the transcriptional control exerted on the genes. Indeed, a block in movement through the nucleopore of newly synthetized messenger RNA encoding the immune-modulatory cytokines IFN-ß and IL-6 are reported here. The ORF6 accessory protein of SARS-CoV-2 displays a multifunctional activity and may represent one of the most important virulence factors. Where conventional antagonistic strategies of immune evasion-such as the suppression of specific transcription factors (e.g., IRF-3, STAT-1/2)-would not be sufficient, the SARS-CoV-2 ORF6 protein is the trump card for the virus, also blocking the movement of IFN-ß and IL-6 mRNAs from nucleus to cytoplasm. Conversely, we showed that nuclear translocation of the NF-κB transcription factor is not affected by the ORF6 protein, although inhibition of its cytoplasmic activation occurred. Therefore, the ORF6 protein exerts a 360-degree inhibition of the antiviral response by blocking as many critical points as possible.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Evasión Inmune , Interferón beta/genética , Interleucina-6/genéticaRESUMEN
The rapid spread of new outbreaks of human infection caused by Zika virus (ZIKV) has raised many global concerns since 2016. Despite the increasing knowledge of this virus, data on the pathogenesis of ZIKV are still missing. In particular, it is still unknown how the virus crosses the endothelial monolayer and gets access to the bloodstream. In the present work, we used human umbilical vein endothelial cells (HUVECs) as a model to study ZIKV infection in vitro. We demonstrated that HUVECs are an optimal reservoir for viral replication, as they were able to sustain ZIKV infection up to two weeks, without showing a cytopathic effect. In order to evaluate the integrity of endothelial monolayer, immunofluorescence was performed on mock-infected or ZIKV-infected cells ± peripheral blood mononuclear cells (PBMCs) or polymorphonuclear cells (PMN), 48 h p.i., by using an anti-VE-Cadherin antibody, a major adherence protein that maintains the integrity of intercellular junctions. In addition to infection, we noted that the presence of some components of the immune system, such as PMNs, played an important role in altering the endothelial monolayer in cell junctions, suggesting that presence at the site of infection probably promotes the spread of ZIKV in vivo in the bloodstream.
RESUMEN
The COVID-19 wave is being recently propelled by BA.2 and, particularly, BA.5 lineages, showing clear transmission advantages over the previously circulating strains. In this study, neutralizing antibody responses against SARS-CoV-2 Wild-Type, BA.2 and BA.5 Omicron sublineages were evaluated among vaccinees, uninfected or infected with Omicron BA.1 strain, 8 months after the third dose of SARS-CoV-2 vaccine. The aim of this study was to compare the cross-protective humoral response to the currently circulating variant strains induced by vaccination, followed by Omicron infection in some subjects. Results showed a low antibody titer against all three variants in uninfected vaccinated subjects. On the other hand, vaccinated subjects, infected with BA.1 variant after receiving the third dose (about 40 days later), showed a strong response against both BA.2 and BA.5 strains, albeit with lower titers. This reinforces the concept that vaccination is fundamental to induce an adequate and protective immune response against SARS-CoV-2, but needs to be updated, in order to also widen the range of action towards emerging variants, phylogenetically distant from the Wuhan strain, against which the current formulation is targeted.
RESUMEN
INTRODUCTION: The protective role against SARS-CoV-2 infection by the third booster dose of mRNA vaccines in cancer patients with solid malignancies is presently unknown. We prospectively investigated the occurrence of COVID-19 in cancer patients on active therapy after the booster vaccine dose. METHODS: Cancer patients on treatment at the Center for Immuno-Oncology (CIO) of the University Hospital of Siena, Italy, and health care workers at CIO who had received a booster third dose of mRNA vaccine entered a systematic follow-up monitoring period to prospectively assess their potential risk of SARS-CoV-2 infection. Serological and microneutralization assay were utilized to assess levels of anti-spike IgG, and of neutralizing antibodies to the SARS-CoV-2 Wild Type, Delta and Omicron variants, respectively, after the booster dose and after negativization of the nasopharyngeal swab for those who had developed COVID-19. RESULTS: Ninety cancer patients with solid tumors on active treatment (Cohort 1) and 30 health care workers (Cohort 2) underwent a booster third dose of mRNA vaccine. After the booster dose, the median value of anti-spike IgG was higher (p = 0.009) in patients than in healthy subjects. Remarkably, 11/90 (12%) patients and 11/30 (37%) healthy subjects tested positive to SARS-CoV-2 infection during the monitoring period. Similar levels of anti-spike IgG and of neutralizing antibodies against all the investigated variants, with geometric mean titers of neutralizing antibodies against the Omicron being the lowest were detected after the booster dose and after COVID-19 in both Cohorts. CONCLUSIONS: The occurrence of SARS-CoV-2 infection we observed in a sizable proportion of booster-dosed cancer patients and in healthy subjects during the Omicron outbreak indicates that highly specific vaccines against SARS-CoV-2 variants are urgently required.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Neoplasias , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Humanos , Inmunoglobulina G , Neoplasias/terapia , SARS-CoV-2 , Vacunas Sintéticas , Proteínas del Envoltorio Viral/genética , Vacunas de ARNmRESUMEN
Due to the rapid global spread of the Omicron (B.1.1.529) variant, efforts to scale up COVID-19 booster vaccination have been improved, especially in light of the increasing evidence of reduced neutralizing antibody (NT Ab) over time in vaccinated subjects. In this study, neutralizing antibody responses against the Wild-Type, Delta, and Omicron strains were evaluated among vaccinees, both infected with Omicron or uninfected, and non-vaccinated subjects infected with Omicron. The aim of the study was to compare the cross-protective humoral response to the variant strains induced by vaccination and/or Omicron infection. The results showed a significant difference in the neutralizing antibody response between the vaccinees and the Omicron-infected vaccinated subjects against the three tested strains (p < 0.001), confirming the booster effect of the Omicron infection in the vaccinees. By contrast, Omicron infection only did not enhance the antibody response to the other variants, indicating a lack of cross-protection. These results suggest the importance of updating the current formulation of the SARS-CoV-2 vaccine to protect people against the Omicron subvariants. A specific Omicron vaccine, administered as a booster for the previously adopted mRNA vaccines, may protect against a wider range of SARS-CoV-2 variants. However, it is unlikely that the Omicron vaccine alone would be able to protect non-vaccinated subjects against other circulating variants.
RESUMEN
BACKGROUND: We have designed a prospective study aiming to monitor the immune response in 178 health care workers six months after BNT162b2 mRNA vaccination. METHODS: The humoral immune response of all subjects was evaluated by chemiluminescence (CMIA); in 60 serum samples, a live virus-based neutralization assay was also tested. Moreover, 6 months after vaccination, B- and T-cell subsets from 20 subjects were observed by FACS analysis after restimulation with the trimeric SARS-CoV-2 Spike protein as an antigen, thus mimicking reinfection in vitro. RESULTS: A significant decrease of circulating IgG levels and neutralizing antibodies over time were observed. Moreover, six months after vaccination, a variable T-cell immune response after in vitro antigen stimulation of PBMC was observed. On the contrary, the analysis of B-cell response showed a shift from unswitched to switched memory B-cells and an increase of Th17 cells. CONCLUSIONS: Although the variability of the CD4+ and CD8+ immune response and an antibody decline was observed among vaccinated subjects, the increase of switched memory B-cells and Th17 cells, correlating with the presence of neutralizing antibodies, opened the debate on the correct timing of vaccination.
RESUMEN
Recurrent infection by Clostridioides difficile has recently been treated by fecal microbiota transplantation (FMT). As viable SARS-CoV-2 was recovered from stool of asymptomatic individuals, the FMT procedure could be a potential risk of SARS-CoV-2 transmission, thus underlying the need to reliably detect SARS-CoV-2 in stool. Here, we performed a multicentric study to explore performances of two commercially available assays for detection of SARS-CoV-2 RNA in stool of potential FMT donors. In three hospitals, 180 stool samples were spiked with serial 10-fold dilutions of a SARS-CoV-2 inactivated lysate to evaluate the Seegene Allplex™ SARS-CoV-2 (SC2) and SARS-CoV-2/FluA/FluB/RSV (SC2FABR) Assays for the detection of viral RNA in stool of FMT donors. The results revealed that both assays detected down to 2 TCID50/mL with comparable limit of detection values, SC2 showing more consistent target positivity rate than SC2FABR. Beyond high amplification efficiency, correlation between CT values and log concentrations of inactivated viral lysates showed R2 values ranging from 0.88 to 0.90 and from 0.87 to 0.91 for the SC2 and SC2FABR assay, respectively. The present results demonstrate that both methods are highly reproducible, sensitive, and accurate for SARS-CoV-2 RNA detection in stool, suggesting a potential use in FMT-donor screening.
RESUMEN
Peripheral immune-checkpoint blockade with mAbs to programmed cell death receptor-1 (PD-1) (either nivolumab or pembrolizumab) or PD-Ligand-1 (PD-L1) (atezolizumab, durvalumab, or avelumab) alone or in combination with doublet chemotherapy represents an expanding treatment strategy for metastatic non-small cell lung cancer (mNSCLC) patients. This strategy lays on the capability of these mAbs to rescue tumor-specific cytotoxic T lymphocytes (CTLs) inactivated throughout PD-1 binding to PD-L1/2 in the tumor sites. This inhibitory interactive pathway is a physiological mechanism of prevention against dangerous overreactions and autoimmunity in case of prolonged and/or repeated CTL response to the same antigen peptides. Therefore, we have carried out a retrospective bioinformatics analysis by single-cell flow cytometry to evaluate if PD-1/PD-L1-blocking mAbs modulate the expression of specific peripheral immune cell subsets, potentially correlated with autoimmunity triggering in 28 mNSCLC patients. We recorded a treatment-related decline in CD4+ T-cell and B-cell subsets and in the neutrophil-to-lymphocyte ratio coupled with an increase in natural killer T (NKT), CD8+PD1+ T cells, and eosinophils. Treatment-related increase in autoantibodies [mainly antinuclear antibodies (ANAs) and extractable nuclear antigen (ENA) antibodies] as well as the frequency of immune-related adverse events were associated with the deregulation of specific immune subpopulations (e.g., NKT cells). Correlative biological/clinical studies with deep immune monitoring are badly needed for a better characterization of the effects produced by PD-1/PD-L1 immune-checkpoint blockade.
RESUMEN
A weak production of INF-ß along with an exacerbated release of pro-inflammatory cytokines have been reported during infection by the novel SARS-CoV-2 virus. SARS-CoV-2 encodes several proteins able to counteract the host immune system, which is believed to be one of the most important features contributing to the viral pathogenesis and development of a severe clinical picture. Previous reports have demonstrated that SARS-CoV-2 N protein, along with some non-structural and accessory proteins, efficiently suppresses INF-ß production by interacting with RIG-I, an important pattern recognition receptor (PRR) involved in the recognition of pathogen-derived molecules. In the present study, we better characterized the mechanism by which the SARS-CoV-2 N counteracts INF-ß secretion and affects RIG-I signaling pathways. In detail, when the N protein was ectopically expressed, we noted a marked decrease in TRIM25-mediated RIG-I activation. The capability of the N protein to bind to, and probably mask, TRIM25 could be the consequence of its antagonistic activity. Furthermore, this interaction occurred at the SPRY domain of TRIM25, harboring the RNA-binding activity necessary for TRIM25 self-activation. Here, we describe new findings regarding the interplay between SARS-CoV-2 and the IFN system, filling some gaps for a better understanding of the molecular mechanisms affecting the innate immune response in COVID-19.