Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 507
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 168(1-2): 264-279.e15, 2017 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-28086093

RESUMEN

The life cycle of a primary cilium begins in quiescence and ends prior to mitosis. In quiescent cells, the primary cilium insulates itself from contiguous dynamic membrane processes on the cell surface to function as a stable signaling apparatus. Here, we demonstrate that basal restriction of ciliary structure dynamics is established by the cilia-enriched phosphoinositide 5-phosphatase, Inpp5e. Growth induction displaces ciliary Inpp5e and accumulates phosphatidylinositol 4,5-bisphosphate in distal cilia. This change triggers otherwise-forbidden actin polymerization in primary cilia, which excises cilia tips in a process we call cilia decapitation. While cilia disassembly is traditionally thought to occur solely through resorption, we show that an acute loss of IFT-B through cilia decapitation precedes resorption. Finally, we propose that cilia decapitation induces mitogenic signaling and constitutes a molecular link between the cilia life cycle and cell-division cycle. This newly defined ciliary mechanism may find significance in cell proliferation control during normal development and cancer.


Asunto(s)
Ciclo Celular , Cilios/metabolismo , Actinas/metabolismo , Animales , Riñón/citología , Riñón/metabolismo , Ratones , Células 3T3 NIH , Fosfatidilinositol 4,5-Difosfato , Monoéster Fosfórico Hidrolasas/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo
3.
Nat Immunol ; 17(2): 204-13, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26726811

RESUMEN

Adjuvanted vaccines afford invaluable protection against disease, and the molecular and cellular changes they induce offer direct insight into human immunobiology. Here we show that within 24 h of receiving adjuvanted swine flu vaccine, healthy individuals made expansive, complex molecular and cellular responses that included overt lymphoid as well as myeloid contributions. Unexpectedly, this early response was subtly but significantly different in people older than ∼35 years. Wide-ranging adverse clinical events can seriously confound vaccine adoption, but whether there are immunological correlates of these is unknown. Here we identify a molecular signature of adverse events that was commonly associated with an existing B cell phenotype. Thus immunophenotypic variation among healthy humans may be manifest in complex pathophysiological responses.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Adyuvantes Inmunológicos , Adolescente , Adulto , Factores de Edad , Anciano , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Autoinmunidad , Linfocitos B/inmunología , Linfocitos B/metabolismo , Análisis por Conglomerados , Citocinas/sangre , Citocinas/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Vacunas contra la Influenza/efectos adversos , Gripe Humana/prevención & control , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Células Mieloides/inmunología , Células Mieloides/metabolismo , Fenotipo , Factores de Tiempo , Transcriptoma , Vacunación , Adulto Joven
4.
Am J Pathol ; 194(9): 1724-1736, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38879084

RESUMEN

Chorioamnionitis generates prostaglandin (PG) E2 and F2α, promoting fetal membrane rupture, cervical ripening, and uterine contractions. 15-Hydroxyprostaglandin dehydrogenase (HPGD) contributes to pregnancy maintenance by inactivating PGs. Herein, the role of decidual cells in the regulation of HPGD expression at the maternal-fetal interface was investigated. HPGD immunostaining was primarily detected in anchoring villi and choriodecidual extravillous trophoblasts (EVTs) during pregnancy. Chorionic EVTs adjacent to the decidua parietalis exhibited significantly higher HPGD levels than those adjacent to the amnion. HPGD histologic score levels were significantly lower in choriodecidua from chorioamnionitis versus gestational age-matched controls (means ± SEM, 132.6 ± 3.8 versus 31.2 ± 7.9; P < 0.05). Conditioned media supernatant (CMS) from in vitro decidualized term decidual cells (TDCs) up-regulated HPGD levels in differentiated EVTs, primary trophoblasts, and HTR8/SVneo cells. However, CMS from 5 µg/mL lipopolysaccharide or 10 ng/mL IL-1ß pretreated TDC cultures down-regulated HPGD levels in HTR8/SVneo cultures. Similarly, direct treatment of HTR8/SVneo with lipopolysaccharide or IL-1ß significantly reduced HPGD levels versus control (P < 0.05) but not in TDC-CMS pretreated HTR8/SVneo cultures. Collectively, these results uncover a novel decidual cell-mediated paracrine mechanism that stimulates levels of trophoblastic HPGD, whose function is to inactivate labor-inducing PGs, thereby promoting uterine quiescence during pregnancy. However, infectious/inflammatory stimuli in decidual cells cause a paracrine inhibition of trophoblastic HPGD expression, increasing PGE2/PGF2α levels, thereby contributing to preterm birth.


Asunto(s)
Decidua , Hidroxiprostaglandina Deshidrogenasas , Trofoblastos , Humanos , Femenino , Trofoblastos/metabolismo , Decidua/metabolismo , Embarazo , Hidroxiprostaglandina Deshidrogenasas/metabolismo , Medios de Cultivo Condicionados/farmacología , Inflamación/patología , Inflamación/metabolismo , Corioamnionitis/patología , Corioamnionitis/metabolismo , Lipopolisacáridos/farmacología , Dinoprostona/metabolismo
5.
J Mol Cell Cardiol ; 188: 79-89, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38364731

RESUMEN

The study investigated the role of volunteer exercise and an obesogenic diet (OBD) in mice, focusing on the splenocardiac axis and inflammation-resolution signaling. Male C57BL/6J mice (2 months old) were assigned to control (CON) or OBD groups for ten months, then randomized into sedentary (Sed) or exercise (Exe) groups for two weeks. Leukocytes, heart function, structure, and spleen tissue examined for inflammation-resolution mediators and macrophage-centric gene transcripts. After two weeks of volunteer exercise, cardiac function shows limited changes, but structural changes were notable in the heart and spleen. Exercise induced cardiac nuclear hyperplasia observed in both CON and OBD groups. OBD-Sed mice showed splenic changes and increased neutrophils, whereas increased neutrophils were noted in the CON post exercise. OBD-Sed increased pro-inflammatory lipid mediators in the heart, reduced by exercise in OBD-Exe, while CON-Exe preserved resolution mediators. Chronic OBD-Sed depletes long chain fatty acids (DHA/EPA) in the heart and spleen, while exercise independently regulates lipid metabolism genes in both organs, affecting macrophage-centric lipid and lipoprotein pathways. Chronic obesity amplified cardiac inflammation, countered by exercise that lowered pro-inflammatory bioactive lipid mediators in the heart. OBD sustained inflammation in the heart and spleen, while exercise conserved resolution mediators in CON mice. In summary, these findings emphasize the interplay of diet with exercise and highlight the intricate connection of diet, exercise, inflammation-resolution signaling in splenocardiac axis and immune health.


Asunto(s)
Dieta , Bazo , Humanos , Masculino , Animales , Ratones , Lactante , Ratones Endogámicos C57BL , Envejecimiento , Ácidos Grasos , Inflamación , Mediadores de Inflamación
6.
Development ; 148(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34486668

RESUMEN

Birth defects result from interactions between genetic and environmental factors, but the mechanisms remain poorly understood. We find that mutations and teratogens interact in predictable ways to cause birth defects by changing target cell sensitivity to Hedgehog (Hh) ligands. These interactions converge on a membrane protein complex, the MMM complex, that promotes degradation of the Hh transducer Smoothened (SMO). Deficiency of the MMM component MOSMO results in elevated SMO and increased Hh signaling, causing multiple birth defects. In utero exposure to a teratogen that directly inhibits SMO reduces the penetrance and expressivity of birth defects in Mosmo-/- embryos. Additionally, tissues that develop normally in Mosmo-/- embryos are refractory to the teratogen. Thus, changes in the abundance of the protein target of a teratogen can change birth defect outcomes by quantitative shifts in Hh signaling. Consequently, small molecules that re-calibrate signaling strength could be harnessed to rescue structural birth defects.


Asunto(s)
Anomalías Inducidas por Medicamentos/genética , Interacción Gen-Ambiente , Proteínas Hedgehog/metabolismo , Penetrancia , Animales , Células Cultivadas , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Transducción de Señal , Receptor Smoothened/genética , Receptor Smoothened/metabolismo
7.
J Pharmacol Exp Ther ; 390(1): 146-158, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38772719

RESUMEN

Myocardial sarcoendoplasmic reticulum calcium ATPase 2 (SERCA2) activity is critical for heart function. We have demonstrated that inhaled halogen (chlorine or bromine) gases inactivate SERCA2, impair calcium homeostasis, increase proteolysis, and damage the myocardium ultimately leading to cardiac dysfunction. To further elucidate the mechanistic role of SERCA2 in halogen-induced myocardial damage, we used bromine-exposed cardiac-specific SERCA2 knockout (KO) mice [tamoxifen-administered SERCA2 (flox/flox) Tg (αMHC-MerCreMer) mice] and compared them to the oil-administered controls. We performed echocardiography and hemodynamic analysis to investigate cardiac function 24 hours after bromine (600 ppm for 30 minutes) exposure and measured cardiac injury markers in plasma and proteolytic activity in cardiac tissue and performed electron microscopy of the left ventricle (LV). Cardiac-specific SERCA2 knockout mice demonstrated enhanced toxicity to bromine. Bromine exposure increased ultrastructural damage, perturbed LV shape geometry, and demonstrated acutely increased phosphorylation of phospholamban in the KO mice. Bromine-exposed KO mice revealed significantly enhanced mean arterial pressure and sphericity index and decreased LV end diastolic diameter and LV end systolic pressure when compared with the bromine-exposed control FF mice. Strain analysis showed loss of synchronicity, evidenced by an irregular endocardial shape in systole and irregular vector orientation of contractile motion across different segments of the LV in KO mice, both at baseline and after bromine exposure. These studies underscore the critical role of myocardial SERCA2 in preserving cardiac ultrastructure and function during toxic halogen gas exposures. SIGNIFICANCE STATEMENT: Due to their increased industrial production and transportation, halogens such as chlorine and bromine pose an enhanced risk of exposure to the public. Our studies have demonstrated that inhalation of these halogens leads to the inactivation of cardiopulmonary SERCA2 and results in calcium overload. Using cardiac-specific SERCA2 KO mice, these studies further validated the role of SERCA2 in bromine-induced myocardial injury. These studies highlight the increased susceptibility of individuals with pathological loss of cardiac SERCA2 to the effects of bromine.


Asunto(s)
Bromo , Ratones Noqueados , Miocardio , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Animales , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Ratones , Miocardio/metabolismo , Miocardio/patología , Masculino , Ratones Endogámicos C57BL , Administración por Inhalación , Proteínas de Unión al Calcio
8.
FASEB J ; 37(5): e22899, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37002889

RESUMEN

Sleep is a fundamental medicine for cardiac homeostasis, and sleep-deprived individuals are prone to higher incidences of heart attack. The lipid-dense diet (obesogenic diet-OBD) is a cumulative risk factor for chronic inflammation in cardiovascular disease; thus, understanding how sleep fragmentation (SF) in an obesity setting impacts immune and cardiac health is an unmet medical need. We hypothesized whether the co-existence of SF with OBD dysregulates gut homeostasis and leukocyte-derived reparative/resolution mediators, thereby impairing cardiac repair. Two-month-old male C57BL/6J mice were randomized first into two groups, then four groups; Control, control + SF, OBD, and OBD + SF mice subjected to myocardial infarction (MI). OBD mice had higher levels of plasma linolenic acid with a decrease in eicosapentaenoic and docosahexaenoic acid. The OBD mice had lower Lactobacillus johnsonii indicating a loss of probiotic microbiota. SF in OBD mice increased Firmicutes/Bacteroidetes ratio indicative of a detrimental change in SF-directed microbiome. OBD + SF group increased in the neutrophil: lymphocyte ratio suggestive of suboptimal inflammation. As a result of SF, resolution mediators (RvD2, RvD3, RvD5, LXA4 , PD1, and MaR1) decreased and inflammatory mediators (PGD2 , PGE2 , PGF2a , 6k-PGF1a ) were increased in OBD mice post-MI. At the site of infarction, the proinflammatory cytokines Ccl2, IL1ß, and IL-6 were amplified in OBD + SF indicating a robust proinflammatory milieu post-MI. Also, brain circadian genes (Bmal1, Clock) were downregulated in SF-subjected control mice, but remained elevated in OBD mice post-MI. SF superimposed on obesity dysregulated physiological inflammation and disrupted resolving response thereby impaired cardiac repair and signs of pathological inflammation.


Asunto(s)
Insuficiencia Cardíaca , Microbiota , Infarto del Miocardio , Masculino , Ratones , Animales , Privación de Sueño/complicaciones , Lipidómica , Ratones Endogámicos C57BL , Inflamación/complicaciones , Insuficiencia Cardíaca/etiología , Infarto del Miocardio/patología , Citocinas/genética , Obesidad/complicaciones
9.
Mol Cell ; 63(6): 976-89, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27594448

RESUMEN

Prostate inflammation has been suggested as an etiology for benign prostatic hyperplasia (BPH). We show that decreased expression of the androgen receptor (AR) in luminal cells of human BPH specimens correlates with a higher degree of regional prostatic inflammation. However, the cause-and-effect relationship between the two events remains unclear. We investigated specifically whether attenuating AR activity in prostate luminal cells induces inflammation. Disrupting luminal cell AR signaling in mouse models promotes cytokine production cell-autonomously, impairs epithelial barrier function, and induces immune cell infiltration, which further augments local production of cytokines and chemokines including Il-1 and Ccl2. This inflammatory microenvironment promotes AR-independent prostatic epithelial proliferation, which can be abolished by ablating IL-1 signaling or depleting its major cellular source, the macrophages. This study demonstrates that disrupting luminal AR signaling promotes prostate inflammation, which may serve as a mechanism for resistance to androgen-targeted therapy for prostate-related diseases.


Asunto(s)
Células Epiteliales/metabolismo , Homeostasis/genética , Macrófagos/metabolismo , Próstata/metabolismo , Hiperplasia Prostática/genética , Receptores Androgénicos/genética , Animales , Proliferación Celular , Quimiocina CCL2/genética , Quimiocina CCL2/inmunología , Quimiocina CXCL10/genética , Quimiocina CXCL10/inmunología , Células Epiteliales/inmunología , Células Epiteliales/patología , Regulación de la Expresión Génica , Homeostasis/inmunología , Humanos , Inflamación , Interleucina-1alfa/genética , Interleucina-1alfa/inmunología , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/inmunología , Macrófagos/inmunología , Macrófagos/patología , Masculino , Ratones , Infiltración Neutrófila , Próstata/inmunología , Próstata/patología , Hiperplasia Prostática/inmunología , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patología , Receptores Androgénicos/inmunología , Transducción de Señal , Células del Estroma/inmunología , Células del Estroma/metabolismo , Células del Estroma/patología
10.
Clin Exp Pharmacol Physiol ; 51(5): e13854, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38527859

RESUMEN

Sotagliflozin is the first dual SGLT1/2 inhibitor antidiabetic drug approved by the US Food and Drug Administration for the management of heart failure. SGLT1/2 inhibition is observed to potentiate the secretion of the incretin hormone, glucagon-like peptide-1 (GLP-1). The current preclinical research sought to investigate the effect of sotagliflozin on the secretion of fat-regulating peptides such as GLP-1, glucagon and fibroblast growth factor 21 (FGF21) and their prospective association with sotagliflozin's potential beneficial effects on dyslipidaemia. During an oral fat tolerance test in mice, sotagliflozin substantially increased GLP-1 and insulin concentrations. Although sotagliflozin alone did not ameliorate postprandial lipemia, its combination with linagliptin (DPP-IV inhibitor) significantly improved lipid tolerance comparable to orlistat (lipase inhibitor). In a triton-induced hypertriglyceridemia model, sotagliflozin, along with other medications (fenofibrate, exenatide and linagliptin) reduced fat excursion; however, co-administration with linagliptin provided no extra advantage. Furthermore, sotagliflozin stimulated glucagon secretion in the alpha TC1.6 cells and healthy mice, which resulted in an increased circulating FGF21 and ß-hydroxybutyrate concentration. Finally, chronic treatment of sotagliflozin in high-fat diet (HFD)-fed obese mice resulted in reduced body weight gain, liver triglyceride, cholesterol, interleukin-6 (IL-6) and tumour necrosis factor alpha (TNF-α) levels compared with the placebo group. However, the addition of linagliptin did not provide any additional benefit. In conclusion, sotagliflozin was found to have an effect on GLP-1 and also stimulate the release of glucagon and FGF21, which are important for regulating fat metabolism. Therefore, sotagliflozin might represent a potential therapeutic approach for the treatment of diabetic dyslipidemia and steatohepatitis.


Asunto(s)
Dislipidemias , Factores de Crecimiento de Fibroblastos , Glucagón , Glicósidos , Ratones , Animales , Glucagón/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Linagliptina/farmacología , Insulina/metabolismo , Dislipidemias/tratamiento farmacológico , Glucemia/metabolismo
11.
Am J Physiol Heart Circ Physiol ; 325(3): H433-H448, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37417877

RESUMEN

Chronic and uncleared inflammation is the root cause of various cardiovascular diseases. Fundamentally, acute inflammation is supportive when overlapping with safe clearance of inflammation termed resolution; however, if the lifestyle-directed extrinsic factors such as diet, sleep, exercise, or physical activity are misaligned, that results in unresolved inflammation. Although genetics play a critical role in cardiovascular health, four extrinsic risk factors-unhealthy processed diet, sleep disruption or fragmentation, sedentary lifestyle, thereby, subsequent stress-have been identified as heterogeneous and polygenic triggers of heart failure (HF), which can result in several complications with indications of chronic inflammation. Extrinsic risk factors directly impact endogenous intrinsic factors, such as using fatty acids by immune-responsive enzymes [lipoxygenases (LOXs)/cyclooxygenases (COXs)/cytochromes-P450 (CYP450)] to form resolution mediators that activate specific resolution receptors. Thus, the balance of extrinsic factors such as diet, sleep, and physical activity feed-forward the coordination of intrinsic factors such as fatty acids-enzymes-bioactive lipid receptors that modulates the immune defense, metabolic health, inflammation-resolution signaling, and cardiac health. Future research on lifestyle- and aging-associated molecular patterns is warranted in the context of intrinsic and extrinsic factors, immune fitness, inflammation-resolution signaling, and cardiac health.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Corazón , Inflamación/metabolismo , Factores de Riesgo , Ácidos Grasos
13.
Biomed Chromatogr ; 37(7): e5482, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35962484

RESUMEN

The understanding of principles that drive the separation in reversed-phase chromatography plays an important role in the prediction of the elution of solutes in RP-HPLC. The separation in RP-HPLC is based on the principle of adsorption and partition. In addition, the logP value, the pKa value of the drug and chromatographic parameters like mobile phase pH, buffer concentration, organic modifier and mobile phase additives also influence the retention and selectivity of the analyte. It was found that hydrophobic, electrostatic, hydrogen bonding and other specific interactions between the stationary phase and the solutes, along with the hydrophobicity of an analyte molecule (logP), modify the retention behaviour of the analytes. This article gives special attention to the influence of ionization and ion interaction on the separation of analytes. The drug molecules with different logP values containing protonated and deprotonated acids, bases and zwitterions are selected as examples and this article addresses various issues related to the method development, relationships between analyte retention and mobile phase pH and the pKa value of the analyte. The advances in this regard, with highlights on topics such as mechanisms of retention and various factors that influence the retention behaviour of analytes, are also updated with suitable examples.


Asunto(s)
Cromatografía de Fase Inversa , Cromatografía de Fase Inversa/métodos , Cromatografía Líquida de Alta Presión/métodos , Concentración de Iones de Hidrógeno
14.
Hum Mol Genet ; 29(3): 369-381, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31816043

RESUMEN

Huntington's disease (HD) is a dominantly inherited neurodegenerative disease. There is accumulating evidence that HD patients have increased prevalence of conduction abnormalities and compromised sinoatrial node function which could lead to increased risk for arrhythmia. We used mutant Huntingtin (mHTT) expressing bacterial artificial chromosome Huntington's disease mice to determine if they exhibit electrocardiogram (ECG) abnormalities involving cardiac conduction that are known to increase risk of sudden arrhythmic death in humans. We obtained surface ECGs and analyzed arrhythmia susceptibility; we observed prolonged QRS duration, increases in PVCs as well as PACs. Abnormal histological and structural changes that could lead to cardiac conduction system dysfunction were seen. Finally, we observed decreases in desmosomal proteins, plakophilin-2 and desmoglein-2, which have been reported to cause cardiac arrhythmias and reduced conduction. Our study indicates that mHTT could cause progressive cardiac conduction system pathology that could increase the susceptibility to arrhythmias and sudden cardiac death in HD patients.


Asunto(s)
Arritmias Cardíacas/patología , Modelos Animales de Enfermedad , Electrocardiografía/métodos , Sistema de Conducción Cardíaco/patología , Proteína Huntingtina/genética , Enfermedad de Huntington/complicaciones , Neuronas/patología , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/metabolismo , Sistema de Conducción Cardíaco/metabolismo , Humanos , Ratones , Ratones Transgénicos , Neuronas/metabolismo
15.
Hum Mol Genet ; 29(17): 2855-2871, 2020 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-32766788

RESUMEN

DOCK3 is a member of the DOCK family of guanine nucleotide exchange factors that regulate cell migration, fusion and viability. Previously, we identified a dysregulated miR-486/DOCK3 signaling cascade in dystrophin-deficient muscle, which resulted in the overexpression of DOCK3; however, little is known about the role of DOCK3 in muscle. Here, we characterize the functional role of DOCK3 in normal and dystrophic skeletal muscle. Utilizing Dock3 global knockout (Dock3 KO) mice, we found that the haploinsufficiency of Dock3 in Duchenne muscular dystrophy mice improved dystrophic muscle pathologies; however, complete loss of Dock3 worsened muscle function. Adult Dock3 KO mice have impaired muscle function and Dock3 KO myoblasts are defective for myogenic differentiation. Transcriptomic analyses of Dock3 KO muscles reveal a decrease in myogenic factors and pathways involved in muscle differentiation. These studies identify DOCK3 as a novel modulator of muscle health and may yield therapeutic targets for treating dystrophic muscle symptoms.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/genética , Desarrollo de Músculos/genética , Músculo Esquelético/crecimiento & desarrollo , Distrofia Muscular de Duchenne/genética , Proteínas del Tejido Nervioso/genética , Animales , Diferenciación Celular/genética , Movimiento Celular/genética , Supervivencia Celular/genética , Humanos , Ratones , Ratones Noqueados , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , Mioblastos/metabolismo , Transcriptoma/genética
16.
Am J Physiol Heart Circ Physiol ; 322(6): H953-H970, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35333119

RESUMEN

All fats are not created equal, and despite the extensive literature, the effect of fat intake is the most debated question in obesity, cardiovascular, and cardiorenal research. Cellular and molecular mechanisms underlying cardiac dysfunction and consequent heart failure in the setting of obesity are not well understood. Our understanding of how fats are metabolically transformed after nonreperfused myocardial infarction (MI), in particular, is incomplete. Here, using male C57BL/6J mice (2 mo old), we determined the role of omega-6 fatty acids, provided as safflower oil (SO) for 12 wk, followed by supplementation with docosahexaenoic acid (DHA; n-3 fatty acids) for 8 wk before MI. With SO feeding, inflammation resolution was impaired. Specialized proresolving mediators (SPMs) increased in DHA-fed mice to reverse the effects of SO, whereas prostaglandins and thromboxane B2 were reduced in the spleen and amplified multiple resolving mechanisms in heart and kidney post-MI. DHA amplified the number of resolving macrophages and cardiac reparative pathways of the splenocardiac and cardiorenal networks in acute heart failure, with higher Treg cells in chronic heart failure and marked expression of Foxp3+ in the myocardium. Our findings indicate that surplus ingestion of SO intensified systemic, baseline, nonresolving inflammation, and DHA intake dominates splenocardiac resolving phase with the biosynthesis of SPMs and controlled cardiorenal inflammation in heart failure survivor mice.NEW & NOTEWORTHY Chronic and surplus dietary intake of safflower oil (SO) increased plasma creatinine dysregulated post-MI splenocardiac inflammation coincides with the dysfunctional cardiorenal network. In contrast, docosahexaenoic acid (DHA) increases post-MI survival in chronic heart failure. DHA transforms into specialized proresolving mediators (SPMs) and limited proinflammatory prostaglandins and thromboxanes following myocardial infarction (MI). DHA promotes Ly6Clow resolving macrophages and T regulatory cells (Foxp3+) in a splenocardiac manner post-MI.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Animales , Ácidos Docosahexaenoicos , Factores de Transcripción Forkhead , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/complicaciones , Prostaglandinas , Aceite de Cártamo
17.
Am J Physiol Heart Circ Physiol ; 323(4): H721-H737, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36018758

RESUMEN

Arachidonate 5-lipoxygenase (ALOX5)-derived leukotrienes are primary signals of leukocyte activation and inflammation in response to ischemic cardiac injury (MI; myocardial infarction). Using risk-free male C57BL/6J and ALOX5-null mice (8-12 wk), we quantitated leukocytes and ALOX5-derived bioactive lipids of the infarcted left ventricle (LV) and spleen to measure the physiological inflammation and cardiac repair. Our results showed that ALOX5 endogenously generates specialized pro-resolving mediators (SPMs) that facilitate cardiac repair post-MI. Deficiency of ALOX5 leads to increase in cyclooxygenase gene expression, 6-keto prostaglandin F1α, and delayed neutrophil clearance with signs of unresolved inflammation post-MI. Consequently, ALOX5 deficiency impaired the resolution of inflammation and cardiac repair, including increased myocardium rupture post-MI in acute heart failure. On-time ALOX5 activation is critical for leukocyte clearance from the infarcted heart, indicating an essential role of ALOX5 in the resolution of inflammation. In addition, to balance the inflammatory responses, ALOX5 is also necessary for fibroblast signaling, as the ALOX5-deficient fibroblast are prone to fibroblast-to-myofibroblast differentiation leading to defective scar formation in post-MI cardiac repair. Consistent with these findings, ALOX5-null mice showed an overly inflammatory response, defective fibrotic signaling, and unresolved inflammation. These findings are indicative of a critical role of ALOX5 in myocardium healing, inflammation-resolution signaling, cardiac repair, and fibroblast pathophysiology.NEW & NOTEWORTHY Arachidonate 5-lipoxygenase (ALOX5) is critical in synthesizing specialized pro-resolving mediators that facilitate cardiac repair after cardiac injury. Thus, ALOX5 orchestrates the overlapping phases of inflammation and resolution to facilitate myocardium healing in cardiac repair postmyocardial infarction.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Animales , Araquidonato 5-Lipooxigenasa/genética , Araquidonato 5-Lipooxigenasa/metabolismo , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Leucotrienos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Prostaglandina-Endoperóxido Sintasas
18.
Am J Physiol Heart Circ Physiol ; 323(1): H176-H200, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35657616

RESUMEN

Diabetes is a major risk factor for cardiovascular diseases, including diabetic cardiomyopathy, atherosclerosis, myocardial infarction, and heart failure. As cardiovascular disease represents the number one cause of death in people with diabetes, there has been a major emphasis on understanding the mechanisms by which diabetes promotes cardiovascular disease, and how antidiabetic therapies impact diabetic heart disease. With a wide array of models to study diabetes (both type 1 and type 2), the field has made major progress in answering these questions. However, each model has its own inherent limitations. Therefore, the purpose of this guidelines document is to provide the field with information on which aspects of cardiovascular disease in the human diabetic population are most accurately reproduced by the available models. This review aims to emphasize the advantages and disadvantages of each model, and to highlight the practical challenges and technical considerations involved. We will review the preclinical animal models of diabetes (based on their method of induction), appraise models of diabetes-related atherosclerosis and heart failure, and discuss in vitro models of diabetic heart disease. These guidelines will allow researchers to select the appropriate model of diabetic heart disease, depending on the specific research question being addressed.


Asunto(s)
Aterosclerosis , Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Insuficiencia Cardíaca , Infarto del Miocardio , Animales , Diabetes Mellitus Tipo 2/complicaciones , Cardiomiopatías Diabéticas/complicaciones , Insuficiencia Cardíaca/etiología , Humanos , Hipoglucemiantes , Infarto del Miocardio/complicaciones
19.
Expert Opin Emerg Drugs ; 27(3): 301-309, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36062456

RESUMEN

INTRODUCTION: Prostate cancer is the most common solid organ malignancy in men in the United States. Until recently, treatment options for men with metastatic disease were limited and patients faced poor outcomes with minimal alternatives. The landscape of prostate cancer treatment has transformed and taken shape over the last 20 years with novel hormonal and non-hormonal therapeutics that have demonstrated significant improvement in survival. However, patients with advanced disease still face imminent progression on hormone blockade therapy. AREAS COVERED: There is a significant market opportunity to devise novel, more potent agents for patients with hormone-resistant disease. Here we review the existing treatment options in men with advanced prostate cancer, the market opportunity within this field, goals of current research, and the novel agents under investigation, including androgen receptor degraders, testosterone synthesis pathway inhibitors, DNA-binding domain and N-terminal domain antagonists, and the combination of hormonal and non-hormonal agents. EXPERT OPINION: Combination therapy regimens and novel agents targeting alternative binding domains of the androgen receptor are of great interest, as they may overcome resistance mechanisms and hold promise as the future of advanced prostate cancer treatment.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Receptores Androgénicos , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Hormonas , Neoplasias de la Próstata Resistentes a la Castración/patología
20.
BMC Cardiovasc Disord ; 22(1): 221, 2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-35568817

RESUMEN

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a syndrome with a heterogeneous cluster of causes, including non-resolving inflammation, endothelial dysfunction, and multi-organ defects. The present study's objective was to identify novel predictors of HFpEF. METHODS: The study analyzed the Multi-Ethnic Study of Atherosclerosis (MESA) to assess the association of specific markers of inflammation with new onset of HFpEF (interleukin-2 [IL-2], matrix metalloproteinase 3 [MMP3], large low-density lipoprotein cholesterol [LDL-C], and medium high-density lipoprotein cholesterol [HDL-C]). The study included men and women 45 to 84 years of age without cardiovascular disease at baseline. The primary outcome was the multivariate association of the hypothesized markers of inflammation with new-onset of HFpEF versus participants without new-onset heart failure. Participants with missing data were excluded. RESULTS: The present analysis included 6814 participants, 53% female, with a mean age of 62 years. Among the entire cohort, HFpEF was diagnosed in 151 (2.2%) participants and heart failure with reduced ejection fraction (HFrEF) was diagnosed in 146 (2.1%) participants. Participants were followed for the outcome of heart failure for a median 13.9 years. Baseline IL-2 was available for 2861 participants. The multivariate analysis included 2792 participants. Of these, 2668 did not develop heart failure, 62 developed HFpEF, 47 developed HFrEF, and 15 developed unclassified heart failure. In the multivariate regression model, IL-2 was associated with new-onset HFpEF (OR, 1.00058; 95% confidence interval, 1.00014 to 1.00102, p = 0.009) but not new-onset HFrEF. In multivariate analysis, MMP3, large LDL-C, and medium HDL-C were not associated with HFpEF or HFrEF. CONCLUSION: These findings portend IL-2 as an important component of suboptimal inflammation in the pathogenesis of HFpEF.


Asunto(s)
Insuficiencia Cardíaca , Biomarcadores , LDL-Colesterol , Estudios de Cohortes , Femenino , Humanos , Inflamación/diagnóstico , Interleucina-2 , Masculino , Metaloproteinasa 3 de la Matriz , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Volumen Sistólico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA