Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Cell Sci ; 127(Pt 1): 250-7, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24190882

RESUMEN

Regulation of the size and abundance of membrane compartments is a fundamental cellular activity. In Saccharomyces cerevisiae, disruption of the ADP-ribosylation factor 1 (ARF1) gene yields larger and fewer Golgi cisternae by partially depleting the Arf GTPase. We observed a similar phenotype with a thermosensitive mutation in Nmt1, which myristoylates and activates Arf. Therefore, partial depletion of Arf is a convenient tool for dissecting mechanisms that regulate Golgi structure. We found that in arf1Δ cells, late Golgi structure is particularly abnormal, with the number of late Golgi cisternae being severely reduced. This effect can be explained by selective changes in cisternal maturation kinetics. The arf1Δ mutation causes early Golgi cisternae to mature more slowly and less frequently, but does not alter the maturation of late Golgi cisternae. These changes quantitatively explain why late Golgi cisternae are fewer in number and correspondingly larger. With a stacked Golgi, similar changes in maturation kinetics could be used by the cell to modulate the number of cisternae per stack. Thus, the rates of processes that transform a maturing compartment can determine compartmental size and copy number.


Asunto(s)
Factor 1 de Ribosilacion-ADP/genética , Regulación Fúngica de la Expresión Génica , Aparato de Golgi/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factor 1 de Ribosilacion-ADP/deficiencia , Transporte Biológico , Aparato de Golgi/ultraestructura , Mutación , Ácidos Mirísticos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Mol Cancer ; 14: 42, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25743594

RESUMEN

BACKGROUND: Nucleoporins mediate nucleocytoplasmic exchange of macromolecules and several have been assigned active mitotic functions. Nucleoporins can participate in various mitotic functions like spindle assembly, kinetochore organisation and chromosome segregation- important for genome integrity. Pathways to genome integrity are frequently deregulated in cancer and many are regulated in part by microRNAs. Indeed, altered levels of numerous microRNAs have frequently been associated with tumorigenesis. Here, we unveil a microRNA-mediated regulation of the nucleoporin Nup214 and its downstream effect on genome integrity. METHODS: Databases/bioinformatic tools such as miRBase, Oncomine and RNAhybrid predicted Nup214 as a miR-133b target. To validate this, we used luciferase reporter assays, Real-Time PCR and immuno-blotting. Flow cytometry and immuno-blots of mitotic markers were used to analyse cell cycle pattern upon thymidine synchronization and miR-133b treatment. Mitotic indices and chromosomal abnormalities were assessed by immuno-fluorescence for FITC-tagged phospho-H3 as well as video-microscopy for GFP-tagged histone H4. Annexin V/propidium iodide staining, caspase3/PARP cleavage and colony formation assays were done to investigate cell death upon either miR-133b transfection or NUP214 knockdown by siRNA. UPCI:SCC084, HCT116, HeLa-H4-pEGFP and HEK293 (human oral squamous cell carcinoma, colorectal, cervical carcinomas and embryonic kidney cell lines, respectively) were used. miR-133b and NUP214 expressions were validated in cancer cell lines and tissues by Real-Time PCR. RESULTS: Examination of head and neck tumour tissues and cancer cell lines revealed that Nup214 and miR-133b expressions are negatively correlated. In vitro, Nup214 was significantly downregulated by ectopic miR-133b. This downregulation elevated mitotic indices and delayed degradation of mitotic marker proteins cyclinB1 and cyclinA and dephosphorylation of H3. Moreover, this mitotic delay enhanced chromosomal abnormalities and apoptosis. CONCLUSIONS: We have identified NUP214, a member of the massive nuclear pore complex, as a novel miR-133b target. Thus, we have shown a hitherto unknown microRNA regulation of mitosis mediated by a member of the nucleoporin family. Based on observations, we also raise some hypotheses regarding transport-dependent/independent functions of Nup214 in this study. Our results hence attempt to explain why miR-133b is generally downregulated in tumours and lay out the potential for Nup214 as a therapeutic target in the treatment of cancer.


Asunto(s)
Muerte Celular/genética , MicroARNs/genética , Mitosis/genética , Proteínas de Complejo Poro Nuclear/genética , Apoptosis/genética , Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Ciclina A/genética , Ciclina B1/genética , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica/genética , Células HCT116 , Células HEK293 , Neoplasias de Cabeza y Cuello/genética , Humanos , Fosforilación/genética
3.
FEBS Lett ; 598(3): 283-301, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37994551

RESUMEN

Reprogramming organelle size has been proposed as a potential therapeutic approach. However, there have been few reports of nucleolar size reprogramming. We addressed this question in Saccharomyces cerevisiae by studying mutants having opposite effects on the nucleolar size. Mutations in genes involved in nuclear functions (KAR3, CIN8, and PRP45) led to enlarged nuclei/nucleoli, whereas mutations in secretory pathway family genes, namely the Rab-GTPases YPT6 and YPT32, reduced nucleolar size. When combined with mutations leading to enlarged nuclei/nucleoli, the YPT6 or YPT32 mutants can effectively reprogram the nuclear/nucleolar size almost back to normal. Our results further indicate that null mutation of YPT6 causes secretory stress that indirectly influences nuclear localization of Maf1, the negative regulator of RNA Polymerase III, which might reduce the nucleolar size by inhibiting nucleolar transcript enrichment.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Proteínas de Saccharomyces cerevisiae , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mutación , Transporte Biológico , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Cinesinas/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo
4.
FEBS Lett ; 590(5): 631-43, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26813731

RESUMEN

Size regulation of human cell nucleus and nucleolus are poorly understood subjects. 3D reconstruction of live image shows that the karyoplasmic ratio (KR) increases by 30-80% in transformed cell lines compared to their immortalized counterpart. The attenuation of nucleo-cytoplasmic transport causes the KR value to increase by 30-50% in immortalized cell lines. Nucleolus volumes are significantly increased in transformed cell lines and the attenuation of nucleo-cytoplasmic transport causes a significant increase in the nucleolus volume of immortalized cell lines. A cytosol and nuclear fraction swapping experiment emphasizes the potential role of unknown cytosolic factors in nuclear and nucleolar size regulation.


Asunto(s)
Nucléolo Celular/metabolismo , Tamaño del Núcleo Celular , Transporte Activo de Núcleo Celular , Línea Celular , Citosol/metabolismo , Humanos , beta Carioferinas/genética , Proteína de Unión al GTP ran/genética
5.
Mol Cell Biol ; 35(2): 356-69, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25368385

RESUMEN

The E2F family of transcription factors regulates genes involved in various aspects of the cell cycle. Beyond the well-documented role in G1/S transition, mitotic regulation by E2F has also been reported. Proper mitotic progression is monitored by the spindle assembly checkpoint (SAC). The SAC ensures bipolar separation of chromosomes and thus prevents aneuploidy. There are limited reports on the regulation of the SAC by E2F. Our previous work identified the SAC protein Cdc20 as a novel transcriptional regulator of the mitotic ubiquitin carrier protein UbcH10. However, none of the Cdc20 transcription complex proteins have any known DNA binding domain. Here we show that an E2F1-DP1 heterodimer is involved in recruitment of the Cdc20 transcription complex to the UBCH10 promoter and in transactivation of the gene. We further show that inactivation of Rb can facilitate this transactivation process. Moreover, this E2F1-mediated regulation of UbcH10 influences mitotic progression. Deregulation of this pathway results in premature anaphase, chromosomal abnormalities, and aneuploidy. We conclude that excess E2F1 due to Rb inactivation recruits the complex of Cdc20 and the anaphase-promoting complex/cyclosome (Cdc20-APC/C) to deregulate the expression of UBCH10, leading to chromosomal instability in cancer cells.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas Cdc20/metabolismo , Inestabilidad Cromosómica/genética , Factor de Transcripción E2F1/metabolismo , Proteína de Retinoblastoma/metabolismo , Activación Transcripcional , Enzimas Ubiquitina-Conjugadoras/genética , Ciclo Celular/fisiología , Inestabilidad Cromosómica/fisiología , Humanos , Mitosis/fisiología , Factores de Transcripción/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA