Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Med ; 22(1): 36, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273340

RESUMEN

BACKGROUND: Continuous assessment and remote monitoring of cognitive function in individuals with mild cognitive impairment (MCI) enables tracking therapeutic effects and modifying treatment to achieve better clinical outcomes. While standardized neuropsychological tests are inconvenient for this purpose, wearable sensor technology collecting physiological and behavioral data looks promising to provide proxy measures of cognitive function. The objective of this study was to evaluate the predictive ability of digital physiological features, based on sensor data from wrist-worn wearables, in determining neuropsychological test scores in individuals with MCI. METHODS: We used the dataset collected from a 10-week single-arm clinical trial in older adults (50-70 years old) diagnosed with amnestic MCI (N = 30) who received a digitally delivered multidomain therapeutic intervention. Cognitive performance was assessed before and after the intervention using the Neuropsychological Test Battery (NTB) from which composite scores were calculated (executive function, processing speed, immediate memory, delayed memory and global cognition). The Empatica E4, a wrist-wearable medical-grade device, was used to collect physiological data including blood volume pulse, electrodermal activity, and skin temperature. We processed sensors' data and extracted a range of physiological features. We used interpolated NTB scores for 10-day intervals to test predictability of scores over short periods and to leverage the maximum of wearable data available. In addition, we used individually centered data which represents deviations from personal baselines. Supervised machine learning was used to train models predicting NTB scores from digital physiological features and demographics. Performance was evaluated using "leave-one-subject-out" and "leave-one-interval-out" cross-validation. RESULTS: The final sample included 96 aggregated data intervals from 17 individuals. In total, 106 digital physiological features were extracted. We found that physiological features, especially measures of heart rate variability, correlated most strongly to the executive function compared to other cognitive composites. The model predicted the actual executive function scores with correlation r = 0.69 and intra-individual changes in executive function scores with r = 0.61. CONCLUSIONS: Our findings demonstrated that wearable-based physiological measures, primarily HRV, have potential to be used for the continuous assessments of cognitive function in individuals with MCI.


Asunto(s)
Disfunción Cognitiva , Dispositivos Electrónicos Vestibles , Anciano , Humanos , Persona de Mediana Edad , Cognición , Disfunción Cognitiva/diagnóstico , Aprendizaje Automático , Pruebas Neuropsicológicas , Ensayos Clínicos como Asunto
2.
Comput Biol Med ; 180: 108959, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39089109

RESUMEN

Neuropsychiatric symptoms (NPS) and mood disorders are common in individuals with mild cognitive impairment (MCI) and increase the risk of progression to dementia. Wearable devices collecting physiological and behavioral data can help in remote, passive, and continuous monitoring of moods and NPS, overcoming limitations and inconveniences of current assessment methods. In this longitudinal study, we examined the predictive ability of digital biomarkers based on sensor data from a wrist-worn wearable to determine the severity of NPS and mood disorders on a daily basis in older adults with predominant MCI. In addition to conventional physiological biomarkers, such as heart rate variability and skin conductance levels, we leveraged deep-learning features derived from physiological data using a self-supervised convolutional autoencoder. Models combining common digital biomarkers and deep features predicted depression severity scores with a correlation of r = 0.73 on average, total severity of mood disorder symptoms with r = 0.67, and mild behavioral impairment scores with r = 0.69 in the study population. Our findings demonstrated the potential of physiological biomarkers collected from wearables and deep learning methods to be used for the continuous and unobtrusive assessments of mental health symptoms in older adults, including those with MCI. TRIAL REGISTRATION: This trial was registered with ClinicalTrials.gov (NCT05059353) on September 28, 2021, titled "Effectiveness and Safety of a Digitally Based Multidomain Intervention for Mild Cognitive Impairment".


Asunto(s)
Biomarcadores , Disfunción Cognitiva , Aprendizaje Profundo , Trastornos del Humor , Dispositivos Electrónicos Vestibles , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/diagnóstico , Estudios Longitudinales , Trastornos del Humor/fisiopatología , Trastornos del Humor/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA