Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunol Rev ; 314(1): 13-35, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36527200

RESUMEN

Neutrophils sense microbes and host inflammatory mediators, and traffic to sites of infection where they direct a broad armamentarium of antimicrobial products against pathogens. Neutrophils are also activated by damage-associated molecular patterns (DAMPs), which are products of cellular injury that stimulate the innate immune system through pathways that are similar to those activated by microbes. Neutrophils and platelets become activated by injury, and cluster and cross-signal to each other with the cumulative effect of driving antimicrobial defense and hemostasis. In addition, neutrophil extracellular traps are extracellular chromatin and granular constituents that are generated in response to microbial and damage motifs and are pro-thrombotic and injurious. Although neutrophils can worsen tissue injury, neutrophils may also have a role in facilitating wound repair following injury. A central theme of this review relates to how critical functions of neutrophils that evolved to respond to infection and damage modulate the tumor microenvironment (TME) in ways that can promote or limit tumor progression. Neutrophils are reprogrammed by the TME, and, in turn, can cross-signal to tumor cells and reshape the immune landscape of tumors. Importantly, promising new therapeutic strategies have been developed to target neutrophil recruitment and function to make cancer immunotherapy more effective.


Asunto(s)
Trampas Extracelulares , Neutrófilos , Humanos , Plaquetas/metabolismo , Plaquetas/patología , Células Endoteliales , Inflamación , Linfocitos T , Trampas Extracelulares/metabolismo
2.
Front Immunol ; 14: 1183180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37261342

RESUMEN

Cancer is one of the leading causes of death worldwide. Treatment outcome is largely dictated by the tumor type, disease stage, and treatment success rates, but also by the variation among patients in endogenous anti-tumor responses. Studies indicate that the presence of neutrophils in the tumor microenvironment is associated with a worse patient outcome due to their ability to suppress local anti-tumor T cell activity. Our previous studies investigated the mechanisms by which neutrophils suppress and damage T cells to become smaller in size (small T cells), debilitating their effector activities. Several studies indicate a role for tumor-associated macrophages in scavenging damaged or dead cells. We hypothesized that the observed lack of small T cells in the TME by confocal microscopy is due to immediate uptake by macrophages. In this study, we confirmed that indeed only the smaller, damaged T cells are taken up by macrophages, once serum-opsonized. Damaged T cells opsonized with complement factor C3 fragments were phagocytosed by macrophages, resulting in almost instantaneous and highly efficient uptake of these small T cells. Inhibition of the complement receptors CR1, CR3 and CR4 expressed by macrophages completely blocked phagocytosis. By contrast, actively proliferating T cells (large T cells) were neither impaired in neutrophil-MDSC activity nor opsonized for phagocytosis by macrophages. Rapid removal of damaged T cells suggests a role of complement and macrophages within the tumor microenvironment to clear suppressed T cells in cancer patients.


Asunto(s)
Macrófagos , Linfocitos T , Humanos , Receptores de Complemento 3b , Receptores de Complemento/fisiología , Complemento C3
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA