Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Cancer ; 22(1): 165, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803324

RESUMEN

BACKGROUND: Interferon-gamma (IFNγ) exerts potent growth inhibitory effects on a wide range of cancer cells through unknown signaling pathways. We pursued complementary screening approaches to characterize the growth inhibition pathway. METHODS: We performed chemical genomics and whole genome targeting CRISPR/Cas9 screens using patient-derived melanoma lines to uncover essential nodes in the IFNγ-mediated growth inhibition pathway. We used transcriptomic profiling to identify cell death pathways activated upon IFNγ exposure. Live imaging experiments coupled with apoptosis assays confirmed the involvement of these pathways in IFNγ-mediated cell death. RESULTS: We show that IFNγ signaling activated ERK. Blocking ERK activation rescued IFNγ-mediated apoptosis in 17 of 23 (~ 74%) cell lines representing BRAF, NRAS, NF1 mutant, and triple wild type subtypes of cutaneous melanoma. ERK signaling induced a stress response, ultimately leading to apoptosis through the activity of DR5 and NOXA proteins. CONCLUSIONS: Our results provide a new understanding of the IFNγ growth inhibition pathway, which will be crucial in defining mechanisms of immunotherapy response and resistance.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Melanoma/metabolismo , Interferón gamma/farmacología , Interferón gamma/metabolismo , Línea Celular Tumoral , Proteínas Proto-Oncogénicas B-raf/genética , Apoptosis
2.
Curr Opin Gastroenterol ; 39(1): 16-22, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36504032

RESUMEN

PURPOSE OF REVIEW: Fecal microbiome transplants (FMT) show promise in treating various diseases, such as Clostridioides difficile infections. FMT have also demonstrated the capacity to modulate the collection of antibiotic resistance genes (ARGs), termed the resistome, within the gut. The purpose of this review was to critically evaluate the literature regarding the interaction between FMT and the gut resistome and determine whether FMT could be used specifically to reduce ARG carriage in the gut. RECENT FINDINGS: Several studies have demonstrated a decrease in ARG carriage post-FMT administration in various disease states, including recurrent C. difficile infection and after antibiotic usage. However, other studies have reported an expansion of the resistome following FMT. Most studies contained small patient cohorts regardless of the outcome and showed heterogeneity in responses. SUMMARY: Research on resistome modulation by FMT is preliminary, and human studies currently lack consensus regarding benefits and risks. From a safety perspective, screening donor samples for ARGs in addition to antibiotic-resistant organisms may be advisable. Additional studies on the mechanisms underlying heterogeneity between studies and individuals are required before FMT is considered an efficient approach for resistome amelioration.


Asunto(s)
Clostridioides difficile , Microbiota , Humanos , Heces , Trasplante de Microbiota Fecal , Antibacterianos/farmacología
3.
Haematologica ; 107(4): 887-898, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34092059

RESUMEN

Tatton-Brown-Rahman syndrome (TBRS) is an overgrowth disorder caused by germline heterozygous mutations in the DNA methyltransferase DNMT3A. DNMT3A is a critical regulator of hematopoietic stem cell (HSC) differentiation and somatic DNMT3A mutations are frequent in hematologic malignancies and clonal hematopoiesis. Yet, the impact of constitutive DNMT3A mutation on hematopoiesis in TBRS is undefined. In order to establish how constitutive mutation of DNMT3A impacts blood development in TBRS we gathered clinical data and analyzed blood parameters in 18 individuals with TBRS. We also determined the distribution of major peripheral blood cell lineages by flow cytometric analyses. Our analyses revealed non-anemic macrocytosis, a relative decrease in lymphocytes and increase in neutrophils in TBRS individuals compared to unaffected controls. We were able to recapitulate these hematologic phenotypes in multiple murine models of TBRS and identified rare hematological and non-hematological malignancies associated with constitutive Dnmt3a mutation. We further show that loss of DNMT3A in TBRS is associated with an altered DNA methylation landscape in hematopoietic cells affecting regions critical to stem cell function and tumorigenesis. Overall, our data identify key hematopoietic effects driven by DNMT3A mutation with clinical implications for individuals with TBRS and DNMT3A-associated clonal hematopoiesis or malignancies.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Discapacidad Intelectual , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Células Germinativas/patología , Hematopoyesis/genética , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Ratones
5.
Dermatol Online J ; 23(1)2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28329467

RESUMEN

BACKGROUND: Venous leg ulcers generally take manyweeks to heal. Novel therapies that shorten healingtime and require less complex care are needed. PURPOSE: The purpose of this report is to presenta pilot study for a new method that can result ina faster healing time for venous leg ulcers usinginexpensive materials. METHODS: A central-gauzeprotocol was developed as described here. A three-ply gauze sponge was placed in the center of theulcer, allowing a peripheral 3-5 mm rim of ulcer toremain exposed. Saline solution was applied to thegauze sponge. A 3-layer Unna boot was applied overthe ulcer with short-stretch compression. This noveltechnique exposed only a peripheral rim of the ulcerto the zinc oxide paste, allowing the central portionof the ulcer to drain through the saline-soaked gauze.The ulcer was photographed at each clinic visit andthe wound area was estimated by finding the bestfitellipse for the ulcer area and computing the areaof the ellipse by a standard formula. RESULTS: Threepatients with small venous leg ulcers treated with thezinc rim technique showed an average healing rate of46.1% per week (range 27.8% - 50.7%). All ulcers werenearly healed by three weeks. After the ulcer size wasreduced sufficiently, patients were discharged withinstructions to apply pieces of Unna dressing to theulcer, under a conventional self-adhesive bandage,maintaining compression, without any saline-gauzein the center. CONCLUSIONS: The three patients in thispilot study showed rapid healing for venous leg ulcerswith the central gauze modification of Unna boottherapy.


Asunto(s)
Vendajes , Vendajes de Compresión , Gelatina/uso terapéutico , Glicerol/uso terapéutico , Úlcera Varicosa/terapia , Compuestos de Zinc/uso terapéutico , Anciano , Anciano de 80 o más Años , Combinación de Medicamentos , Femenino , Humanos , Proyectos Piloto , Cloruro de Sodio/uso terapéutico , Resultado del Tratamiento
6.
Curr Biol ; 33(12): 2367-2382.e7, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37209680

RESUMEN

The African malaria mosquito Anopheles gambiae exhibits a strong innate drive to seek out humans in its sensory environment, classically entering homes to land on human skin in the hours flanking midnight. To gain insight into the role that olfactory cues emanating from the human body play in generating this epidemiologically important behavior, we developed a large-scale multi-choice preference assay in Zambia with infrared motion vision under semi-field conditions. We determined that An. gambiae prefers to land on arrayed visual targets warmed to human skin temperature during the nighttime when they are baited with carbon dioxide (CO2) emissions reflective of a large human over background air, body odor from one human over CO2, and the scent of one sleeping human over another. Applying integrative whole body volatilomics to multiple humans tested simultaneously in competition in a six-choice assay, we reveal high attractiveness is associated with whole body odor profiles from humans with increased relative abundances of the volatile carboxylic acids butyric acid, isobutryic acid, and isovaleric acid, and the skin microbe-generated methyl ketone acetoin. Conversely, those least preferred had whole body odor that was depleted of carboxylic acids among other compounds and enriched with the monoterpenoid eucalyptol. Across expansive spatial scales, heated targets without CO2 or whole body odor were minimally or not attractive at all to An. gambiae. These results indicate that human scent acts critically to guide thermotaxis and host selection by this prolific malaria vector as it navigates towards humans, yielding intrinsic heterogeneity in human biting risk.


Asunto(s)
Anopheles , Malaria , Taxia , Animales , Humanos , Odorantes , Olor Corporal , Dióxido de Carbono , Mosquitos Vectores , Feromonas Humanas , Ácidos Carboxílicos
7.
Front Microbiol ; 11: 1995, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973719

RESUMEN

In recent years, greenhouse-grown tomato (Solanum lycopersicum) plants showing vascular wilt and yellowing symptoms have been observed between 2015 and 2018 in North Carolina (NC) and considered as an emerging threat to profitability. In total, 38 putative isolates were collected from symptomatic tomatoes in 12 grower greenhouses and characterized to infer pathogenic and genomic diversity, and mating-type (MAT) idiomorphs distribution. Morphology and polymerase chain reaction (PCR) markers confirmed that all isolates were Fusarium oxysporum f. sp. lycopersici (FOL) and most of them were race 3. Virulence analysis on four different tomato cultivars revealed that virulence among isolates, resistance in tomato cultivars, and the interaction between the isolates and cultivars differed significantly (P < 0.001). Cultivar 'Happy Root' (I-1, I-2, and I-3 genes for resistance) was highly resistant to FOL isolates tested. We sequenced and examined for the presence of 15 pathogenicity genes from different classes (Fmk1, Fow1, Ftf1, Orx1, Pda1, PelA, PelD, Pep1, Pep2, eIF-3, Rho1, Scd1, Snf1, Ste12, and Sge1), and 14 Secreted In Xylem (SIX) genes to use as genetic markers to identify and differentiate pathogenic isolates of FOL. Sequence data analysis showed that five pathogenicity genes, Fmk1, PelA, Rho1, Sge1, and Ste12 were present in all isolates while Fow1, Ftf1, Orx1, Peda1, Pep1, eIF-3, Scd1, and Snf1 genes were dispersed among isolates. Two genes, Pep2 and PelD, were absent in all isolates. Of the 14 SIX genes assessed, SIX1, SIX3, SIX5, SIX6, SIX7, SIX8, SIX12, and SIX14 were identified in most isolates while the remaining SIX genes varied among isolates. All isolates harbored one of the two mating-type (MAT-1 or MAT-2) idiomorphs, but not both. The SIX4 gene was present only in race 1 isolates. Diversity assessments based on sequences of the effector SIX3- and the translation elongation factor 1-α encoding genes SIX3 and tef1-α, respectively were the most informative to differentiate pathogenic races of FOL and resulted in race 1, forming a monophyletic clade while race 3 comprised multiple clades. Furthermore, phylogeny-based on SIX3- and tef1-α gene sequences showed that the predominant race 3 from greenhouse production systems significantly overlapped with previously designated race 3 isolates from various regions of the globe.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA