Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 517
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 629(8010): 193-200, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600383

RESUMEN

Sex differences in mammalian complex traits are prevalent and are intimately associated with androgens1-7. However, a molecular and cellular profile of sex differences and their modulation by androgens is still lacking. Here we constructed a high-dimensional single-cell transcriptomic atlas comprising over 2.3 million cells from 17 tissues in Mus musculus and explored the effects of sex and androgens on the molecular programs and cellular populations. In particular, we found that sex-biased immune gene expression and immune cell populations, such as group 2 innate lymphoid cells, were modulated by androgens. Integration with the UK Biobank dataset revealed potential cellular targets and risk gene enrichment in antigen presentation for sex-biased diseases. This study lays the groundwork for understanding the sex differences orchestrated by androgens and provides important evidence for targeting the androgen pathway as a broad therapeutic strategy for sex-biased diseases.


Asunto(s)
Andrógenos , Células , Caracteres Sexuales , Análisis de la Célula Individual , Transcriptoma , Animales , Femenino , Humanos , Masculino , Ratones , Andrógenos/metabolismo , Andrógenos/farmacología , Presentación de Antígeno/efectos de los fármacos , Presentación de Antígeno/genética , Inmunidad Innata , Linfocitos/metabolismo , Linfocitos/citología , Linfocitos/inmunología , Linfocitos/efectos de los fármacos , Ratones Endogámicos C57BL , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Biobanco del Reino Unido , Células/efectos de los fármacos , Células/inmunología , Células/metabolismo
2.
Nature ; 627(8004): 586-593, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38355797

RESUMEN

Over half of hepatocellular carcinoma (HCC) cases diagnosed worldwide are in China1-3. However, whole-genome analysis of hepatitis B virus (HBV)-associated HCC in Chinese individuals is limited4-8, with current analyses of HCC mainly from non-HBV-enriched populations9,10. Here we initiated the Chinese Liver Cancer Atlas (CLCA) project and performed deep whole-genome sequencing (average depth, 120×) of 494 HCC tumours. We identified 6 coding and 28 non-coding previously undescribed driver candidates. Five previously undescribed mutational signatures were found, including aristolochic-acid-associated indel and doublet base signatures, and a single-base-substitution signature that we termed SBS_H8. Pentanucleotide context analysis and experimental validation confirmed that SBS_H8 was distinct to the aristolochic-acid-associated SBS22. Notably, HBV integrations could take the form of extrachromosomal circular DNA, resulting in elevated copy numbers and gene expression. Our high-depth data also enabled us to characterize subclonal clustered alterations, including chromothripsis, chromoplexy and kataegis, suggesting that these catastrophic events could also occur in late stages of hepatocarcinogenesis. Pathway analysis of all classes of alterations further linked non-coding mutations to dysregulation of liver metabolism. Finally, we performed in vitro and in vivo assays to show that fibrinogen alpha chain (FGA), determined as both a candidate coding and non-coding driver, regulates HCC progression and metastasis. Our CLCA study depicts a detailed genomic landscape and evolutionary history of HCC in Chinese individuals, providing important clinical implications.


Asunto(s)
Carcinoma Hepatocelular , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias Hepáticas , Mutación , Secuenciación Completa del Genoma , Humanos , Ácidos Aristolóquicos/metabolismo , Carcinogénesis , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virología , China , Cromotripsis , Progresión de la Enfermedad , ADN Circular/genética , Pueblos del Este de Asia/genética , Evolución Molecular , Genoma Humano/genética , Virus de la Hepatitis B/genética , Mutación INDEL/genética , Hígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virología , Mutación/genética , Metástasis de la Neoplasia/genética , Sistemas de Lectura Abierta/genética , Reproducibilidad de los Resultados
3.
Cell ; 159(1): 163-175, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25201529

RESUMEN

The prostate gland consists of basal and luminal cells arranged as pseudostratified epithelium. In tissue recombination models, only basal cells reconstitute a complete prostate gland, yet murine lineage-tracing experiments show that luminal cells generate basal cells. It has remained challenging to address the molecular details of these transitions and whether they apply to humans, due to the lack of culture conditions that recapitulate prostate gland architecture. Here, we describe a 3D culture system that supports long-term expansion of primary mouse and human prostate organoids, composed of fully differentiated CK5+ basal and CK8+ luminal cells. Organoids are genetically stable, reconstitute prostate glands in recombination assays, and can be experimentally manipulated. Single human luminal and basal cells give rise to organoids, yet luminal-cell-derived organoids more closely resemble prostate glands. These data support a luminal multilineage progenitor cell model for prostate tissue and establish a robust, scalable system for mechanistic studies.


Asunto(s)
Técnicas de Cultivo de Órganos , Organoides , Próstata/citología , Andrógenos/metabolismo , Humanos , Masculino , Células Madre/citología , Células Madre/metabolismo
4.
Cell ; 159(1): 176-187, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25201530

RESUMEN

The lack of in vitro prostate cancer models that recapitulate the diversity of human prostate cancer has hampered progress in understanding disease pathogenesis and therapy response. Using a 3D organoid system, we report success in long-term culture of prostate cancer from biopsy specimens and circulating tumor cells. The first seven fully characterized organoid lines recapitulate the molecular diversity of prostate cancer subtypes, including TMPRSS2-ERG fusion, SPOP mutation, SPINK1 overexpression, and CHD1 loss. Whole-exome sequencing shows a low mutational burden, consistent with genomics studies, but with mutations in FOXA1 and PIK3R1, as well as in DNA repair and chromatin modifier pathways that have been reported in advanced disease. Loss of p53 and RB tumor suppressor pathway function are the most common feature shared across the organoid lines. The methodology described here should enable the generation of a large repertoire of patient-derived prostate cancer lines amenable to genetic and pharmacologic studies.


Asunto(s)
Técnicas de Cultivo , Organoides , Neoplasias de la Próstata/patología , Xenoinjertos , Humanos , Masculino , Metástasis de la Neoplasia/patología , Organoides/patología , Farmacología/métodos , Proteínas Supresoras de Tumor/metabolismo
5.
Brief Bioinform ; 24(2)2023 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-36882016

RESUMEN

Precisely calling chromatin loops has profound implications for further analysis of gene regulation and disease mechanisms. Technological advances in chromatin conformation capture (3C) assays make it possible to identify chromatin loops in the genome. However, a variety of experimental protocols have resulted in different levels of biases, which require distinct methods to call true loops from the background. Although many bioinformatics tools have been developed to address this problem, there is still a lack of special introduction to loop-calling algorithms. This review provides an overview of the loop-calling tools for various 3C-based techniques. We first discuss the background biases produced by different experimental techniques and the denoising algorithms. Then, the completeness and priority of each tool are categorized and summarized according to the data source of application. The summary of these works can help researchers select the most appropriate method to call loops and further perform downstream analysis. In addition, this survey is also useful for bioinformatics scientists aiming to develop new loop-calling algorithms.


Asunto(s)
Cromatina , Biología Computacional , Biología Computacional/métodos , Cromatina/genética , Cromosomas , Algoritmos , Genoma
6.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38189542

RESUMEN

Non-coding RNAs (ncRNAs) are a class of RNA molecules that do not have the potential to encode proteins. Meanwhile, they can occupy a significant portion of the human genome and participate in gene expression regulation through various mechanisms. Gestational diabetes mellitus (GDM) is a pathologic condition of carbohydrate intolerance that begins or is first detected during pregnancy, making it one of the most common pregnancy complications. Although the exact pathogenesis of GDM remains unclear, several recent studies have shown that ncRNAs play a crucial regulatory role in GDM. Herein, we present a comprehensive review on the multiple mechanisms of ncRNAs in GDM along with their potential role as biomarkers. In addition, we investigate the contribution of deep learning-based models in discovering disease-specific ncRNA biomarkers and elucidate the underlying mechanisms of ncRNA. This might assist community-wide efforts to obtain insights into the regulatory mechanisms of ncRNAs in disease and guide a novel approach for early diagnosis and treatment of disease.


Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos , Diabetes Gestacional , Síndromes de Malabsorción , Humanos , Femenino , Embarazo , Diabetes Gestacional/genética , Genoma Humano , ARN no Traducido/genética , Biomarcadores
7.
Nature ; 576(7787): 437-441, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31853083

RESUMEN

Water freezing is ubiquitous and affects areas as diverse as climate, the chemical industry, cryobiology and materials science. Ice nucleation is the controlling step in water freezing1-5 and has, for nearly a century, been assumed to require the formation of a critical ice nucleus6-10. But there has been no direct experimental evidence for the existence of such a nucleus, owing to its transient and nanoscale nature6,7. Here we report ice nucleation in water droplets containing graphene oxide nanosheets of controlled sizes and show that they have a notable impact on ice nucleation only above a certain size that varies with the degree of supercooling of the droplets. We infer from our experimental data and theoretical calculations that the critical size of the graphene oxide reflects the size of the critical ice nucleus, which in the case of sufficiently large graphene oxides sits on their surface and gives rise to ice formation behaviour consistent with classical nucleation theory. By contrast, when the graphene oxide size is smaller than that of the critical ice nucleus, pinning at the periphery of the graphene oxide deforms the ice nucleus as it grows. This gives rise to a much higher free-energy barrier for nucleation and suppresses the promoting effect of the graphene oxide11. The results provide experimental information on the existence and temperature-dependent size of the critical ice nucleus, which has previously only been explored theoretically and through simulations12-16. As pinning of a pre-critical nucleus at a nanoparticle edge is not specific to the ice nucleus on graphene oxides, we expect that our approach could be extended to probe the critical nuclei in other nucleation processes.

9.
Nano Lett ; 24(10): 3257-3266, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38426843

RESUMEN

The extracellular matrix (ECM) orchestrates cell behavior and tissue regeneration by modulating biochemical and mechanical signals. Manipulating cell-material interactions is crucial for leveraging biomaterials to regulate cell functions. Yet, integrating multiple cues in a single material remains a challenge. Here, near-infrared (NIR)-controlled multifunctional hydrogel platforms, named PIC/CM@NPs, are introduced to dictate fibroblast behavior during wound healing by tuning the matrix oxidative stress and mechanical tensions. PIC/CM@NPs are prepared through cell adhesion-medicated assembly of collagen-like polyisocyanide (PIC) polymers and cell-membrane-coated conjugated polymer nanoparticles (CM@NPs), which closely mimic the fibrous structure and nonlinear mechanics of ECM. Upon NIR stimulation, PIC/CM@NPs composites enhance fibroblast cell proliferation, migration, cytokine production, and myofibroblast activation, crucial for wound closure. Moreover, they exhibit effective and toxin removal antibacterial properties, reducing inflammation. This multifunctional approach accelerates healing by 95%, highlighting the importance of integrating biochemical and biophysical cues in the biomaterial design for advanced tissue regeneration.


Asunto(s)
Materiales Biocompatibles , Cicatrización de Heridas , Especies Reactivas de Oxígeno , Materiales Biocompatibles/farmacología , Polímeros/farmacología , Matriz Extracelular , Hidrogeles/farmacología , Antibacterianos/farmacología
10.
Plant Physiol ; 191(2): 1272-1287, 2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36437699

RESUMEN

Increasing planting density is one of the most effective ways to improve crop yield. However, one major factor that limits crop planting density is the weakened immunity of plants to pathogens and insects caused by dim light (DL) under shade conditions. The molecular mechanism underlying how DL compromises plant immunity remains unclear. Here, we report that DL reduces rice (Oryza sativa) resistance against brown planthopper (BPH; Nilaparvata lugens) by elevating ethylene (ET) biosynthesis and signaling in a Phytochrome B (OsPHYB)-dependent manner. The DL-reduced BPH resistance is relieved in osphyB mutants, but aggravated in OsPHYB overexpressing plants. Further, we found that DL reduces the nuclear accumulation of OsphyB, thus alleviating Phytochrome Interacting Factor Like14 (OsPIL14) degradation, consequently leading to the up-regulation of 1-Aminocyclopropane-1-Carboxylate Oxidase1 (OsACO1) and an increase in ET levels. In addition, we found that nuclear OsphyB stabilizes Ethylene Insensitive Like2 (OsEIL2) by competitively interacting with EIN3 Binding F-Box Protein (OsEBF1) to enhance ET signaling in rice, which contrasts with previous findings that phyB blocks ET signaling by facilitating Ethylene Insensitive3 (EIN3) degradation in other plant species. Thus, enhanced ET biosynthesis and signaling reduces BPH resistance under DL conditions. Our findings provide insights into the molecular mechanism of the light-regulated ET pathway and host-insect interactions and potential strategies for sustainable insect management.


Asunto(s)
Etilenos , Hemípteros , Oryza , Fitocromo B , Animales , Etilenos/metabolismo , Hemípteros/metabolismo , Oryza/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo
11.
Biotechnol Bioeng ; 121(6): 1831-1845, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38454569

RESUMEN

Raman spectroscopy has found widespread usage in monitoring cell culture processes both in research and practical applications. However, commonly, preprocessing methods, spectral regions, and modeling parameters have been chosen based on experience or trial-and-error strategies. These choices can significantly impact the performance of the models. There is an urgent need for a simple, effective, and automated approach to determine a suitable procedure for constructing accurate models. This paper introduces the adoption of a design of experiment (DoE) method to optimize partial least squares models for measuring the concentration of different components in cell culture bioreactors. The experimental implementation utilized the orthogonal test table L25(56). Within this framework, five factors were identified as control variables for the DoE method: the window width of Savitzky-Golay smoothing, the baseline correction method, the order of preprocessing steps, spectral regions, and the number of latent variables. The evaluation method for the model was considered as a factor subject to noise. The optimal combination of levels was determined through the signal-to-noise ratio response table employing Taguchi analysis. The effectiveness of this approach was validated through two cases, involving different cultivation scales, different Raman spectrometers, and different analytical components. The results consistently demonstrated that the proposed approach closely approximated the global optimum, regardless of data set size, predictive components, or the brand of Raman spectrometer. The performance of models recommended by the DoE strategy consistently surpassed those built using raw data, underscoring the reliability of models generated through this approach. When compared to exhaustive all-combination experiments, the DoE approach significantly reduces calculation times, making it highly practical for the implementation of Raman spectroscopy in bioprocess monitoring.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula , Espectrometría Raman , Espectrometría Raman/métodos , Técnicas de Cultivo de Célula/métodos , Modelos Biológicos , Células CHO , Cricetulus , Animales
12.
Pharm Res ; 41(2): 321-334, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38291165

RESUMEN

PURPOSES: We previously reported an unexpected phenomenon that shaking stress could cause more protein degradation in freeze-dried monoclonal antibody (mAb) formulations than liquid ones (J Pharm Sci, 2022, 2134). The main purposes of the present study were to investigate the effects of shaking stress on protein degradation and sub-visible particle (SbVP) formation in freeze-dried mAb formulations, and to analyze the factors influencing protein degradation during production and transportation. METHODS: The aggregation behavior of mAb-X formulations during production and transportation was simulated by shaking at a rate of 300 rpm at 25°C for 24 h. The contents of particles and monomers were analyzed by micro-flow imaging, dynamic light scattering, size exclusion chromatography, and ultraviolet - visible (UV-Vis) spectroscopy to compare the protective effects of excipients on the aggregation of mAb-X. RESULTS: Shaking stress could cause protein degradation in freeze-dried mAb-X formulations, while surfactant, appropriate pH, polyol mannitol, and high protein concentration could impact SbVP generation. Water content had little effect on freeze-dried protein degradation during shaking, as far as the water content was controlled in the acceptable range as recommended by mainstream pharmacopoeias (i.e., less than 3%). CONCLUSIONS: Shaking stress can reduce the physical stability of freeze-dried mAb formulations, and the addition of surfactants, polyol mannitol, and a high protein concentration have protective effects against the degradation of model mAb formulations induced by shaking stress. The experimental results provide new insight for the development of freeze-dried mAb formulations.


Asunto(s)
Anticuerpos Monoclonales , Química Farmacéutica , Anticuerpos Monoclonales/química , Química Farmacéutica/métodos , Excipientes/química , Liofilización/métodos , Manitol , Agua , Estabilidad de Medicamentos
13.
Nano Lett ; 23(1): 326-335, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36548213

RESUMEN

Pathogenic fungal infection is a major clinical threat because pathogenic fungi have developed resistant mechanisms to evade the innate immune response, especially interactions with macrophages. Herein, a strategy to activate immune responses of macrophages to fungi based on near-infrared (NIR) responsive conjugated polymer nanoparticles (CPNs-M) is reported for antifungal immunotherapy. Under NIR light irradiation, CPNs-M exposes ß-glucan on the surface of fungal conidia by photothermal damage and drug released from CPNs-M. The exposed ß-glucan elicits macrophage recognition and subsequently activates calcium-calmodulin (Ca2+-CaM) signaling followed by the LC3-associated phagocytosis (LAP) pathway to kill fungal conidia. Consequently, a remarkable elimination of intracellular fugal conidia and successful treatment of fungal pneumonia are achieved. This remote regulation strategy to restore pathogen-immune cell interaction on demand provides a new insight into combatting intractable intracellular infections.


Asunto(s)
Nanopartículas , beta-Glucanos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Antifúngicos/metabolismo , Polímeros/metabolismo , Macrófagos/metabolismo , Nanopartículas/uso terapéutico , beta-Glucanos/metabolismo
14.
Biol Reprod ; 109(1): 53-64, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37154585

RESUMEN

Aerobic exercises could improve the sperm motility of obese individuals. However, the underlying mechanism has not been fully elucidated, especially the possible involvement of the epididymis in which sperm acquire their fertilizing capacity. This study aims to investigate the benefit effect of aerobic exercises on the epididymal luminal milieu of obese rats. Sprague-Dawley male rats were fed on a normal or high-fat diet (HFD) for 10 weeks and then subjected to aerobic exercises for 12 weeks. We verified that TRPA1 was located in the epididymal epithelium. Notably, aerobic exercises reversed the downregulated TRPA1 in the epididymis of HFD-induced obese rats, thus improving sperm fertilizing capacity and Cl- concentration in epididymal milieu. Ussing chamber experiments showed that cinnamaldehyd (CIN), agonist of TRPA1, stimulated an increase of the short-circuit current (ISC) in rat cauda epididymal epithelium, which was subsequently abolished by removing the ambient Cl- and HCO3-. In vivo data revealed that aerobic exercises increased the CIN-stimulated Cl- secretion rate of epididymal epithelium in obese rats. Pharmacological experiments revealed that blocking cystic fibrosis transmembrane regulator (CFTR) and Ca2+-activated Cl- channel (CaCC) suppressed the CIN-stimulated anion secretion. Moreover, CIN application in rat cauda epididymal epithelial cells elevated intracellular Ca2+ level, and thus activate CACC. Interfering with the PGHS2-PGE2-EP2/EP4-cAMP pathway suppressed CFTR-mediated anion secretion. This study demonstrates that TRPA1 activation can stimulate anion secretion via CFTR and CaCC, which potentially forming an appropriate microenvironment essential for sperm maturation, and aerobic exercises can reverse the downregulation of TRPA1 in the epididymal epithelium of obese rats.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Epidídimo , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Epidídimo/metabolismo , Dieta Alta en Grasa/efectos adversos , Calcio/metabolismo , Motilidad Espermática , Semen/metabolismo , Canales de Cloruro/metabolismo , Canales de Cloruro/farmacología , Aniones/metabolismo , Aniones/farmacología , Proteínas Portadoras/metabolismo , Homeostasis , Cloruros/metabolismo , Cloruros/farmacología
15.
J Antimicrob Chemother ; 78(3): 747-756, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36659862

RESUMEN

OBJECTIVES: The genus Streptococcus contains species of important zoonotic pathogens such as those that cause bovine mastitis. Unfortunately, many Streptococcus species have developed antibiotic resistance. Phage lysins are considered promising alternatives to antibiotics because it is difficult for bacteria to develop lysin resistance. However, there remains a lack of phage lysin resources for the treatment of streptococci-induced mastitis. METHODS: We identified the prophage lysin Lys0859 from the genome of the Streptococcus suis SS0859 strain. Lys0859 was subsequently characterized to determine its host range, MIC, bactericidal activity in milk, and ability to clear biofilms in vitro. Finally, to determine the effects of Lys0859 on the treatment of both bovine mastitis and S. suis infection in vivo, we established models of Streptococcus agalactiae ATCC 13813-induced mastitis and S. suis serotype 2 SC19 systemic infection. RESULTS: Our results demonstrate that Lys0859 possesses broad-spectrum lytic activity against Streptococcus and Staphylococcus species isolated from animals with bovine mastitis and 15 serotypes of S. suis isolated from swine. Intramammary and intramuscular injection of Lys0859 reduced the number of bacteria in mammary tissue by 3.75 and 1.45 logs compared with the PBS group, respectively. Furthermore, 100 µg/mouse of Lys0859 administered intraperitoneally at 1 h post-infection protected 83.3% (5/6) of mice from a lethal dose of S. suis infection. CONCLUSIONS: Overall, our results enhance the understanding and development of new strategies to combat both streptococci-induced mastitis and S. suis infection.


Asunto(s)
Bacteriófagos , Mastitis Bovina , Infecciones Estreptocócicas , Fagos de Streptococcus , Streptococcus suis , Femenino , Bovinos , Animales , Porcinos , Ratones , Humanos , Profagos/genética , Mastitis Bovina/tratamiento farmacológico , Antibacterianos/farmacología , Infecciones Estreptocócicas/microbiología
16.
Plant Physiol ; 190(2): 1349-1364, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35771641

RESUMEN

Plant rhabdoviruses heavily rely on insect vectors for transmission between sessile plants. However, little is known about the underlying mechanisms of insect attraction and transmission of plant rhabdoviruses. In this study, we used an arthropod-borne cytorhabdovirus, Barley yellow striate mosaic virus (BYSMV), to demonstrate the molecular mechanisms of a rhabdovirus accessory protein in improving plant attractiveness to insect vectors. Here, we found that BYSMV-infected barley (Hordeum vulgare L.) plants attracted more insect vectors than mock-treated plants. Interestingly, overexpression of BYSMV P6, an accessory protein, in transgenic wheat (Triticum aestivum L.) plants substantially increased host attractiveness to insect vectors through inhibiting the jasmonic acid (JA) signaling pathway. The BYSMV P6 protein interacted with the constitutive photomorphogenesis 9 signalosome subunit 5 (CSN5) of barley plants in vivo and in vitro, and negatively affected CSN5-mediated deRUBylation of cullin1 (CUL1). Consequently, the defective CUL1-based Skp1/Cullin1/F-box ubiquitin E3 ligases could not mediate degradation of jasmonate ZIM-domain proteins, resulting in compromised JA signaling and increased insect attraction. Overexpression of BYSMV P6 also inhibited JA signaling in transgenic Arabidopsis (Arabidopsis thaliana) plants to attract insects. Our results provide insight into how a plant cytorhabdovirus subverts plant JA signaling to attract insect vectors.


Asunto(s)
Arabidopsis , Hordeum , Rhabdoviridae , Animales , Arabidopsis/metabolismo , Complejo del Señalosoma COP9/metabolismo , Ciclopentanos/metabolismo , Hordeum/genética , Hordeum/metabolismo , Insectos Vectores , Oxilipinas/metabolismo , Proteínas/metabolismo , Rhabdoviridae/metabolismo , Transducción de Señal , Triticum/genética , Triticum/metabolismo , Ubiquitinas/metabolismo
17.
Plant Cell ; 32(9): 2878-2897, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32641349

RESUMEN

Casein kinase 1 (CK1) family members are conserved Ser/Thr protein kinases that regulate important developmental processes in all eukaryotic organisms. However, the functions of CK1 in plant immunity remain largely unknown. Barley yellow striate mosaic virus (BYSMV), a plant cytorhabdovirus, infects cereal crops and is obligately transmitted by the small brown planthopper (SBPH; Laodelphax striatellus). The BYSMV phosphoprotein (P) exists as two forms with different mobilities corresponding to 42 kD (P42) and 44 kD (P44) in SDS-PAGE gels. Mass spectrometric analyses revealed a highly phosphorylated serine-rich (SR) motif at the C-terminal intrinsically disordered region of the P protein. The Ala-substitution mutant (PS5A) in the SR motif stimulated virus replication, whereas the phosphorylation-mimic mutant (PS5D) facilitated virus transcription. Furthermore, PS5A and PS5D associated preferentially with nucleocapsid protein-RNA templates and the large polymerase protein to provide optimal replication and transcription complexes, respectively. Biochemistry assays demonstrated that plant and insect CK1 protein kinases could phosphorylate the SR motif and induce conformational changes from P42 to P44. Moreover, overexpression of CK1 or a dominant-negative mutant impaired the balance between P42 and P44, thereby compromising virus infections. Our results demonstrate that BYSMV recruits the conserved CK1 kinases to achieve its cross-kingdom infection in host plants and insect vectors.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Interacciones Huésped-Patógeno/fisiología , Proteínas de Plantas/metabolismo , Rhabdoviridae/fisiología , Proteínas Virales/metabolismo , Secuencias de Aminoácidos , Quinasa de la Caseína I/genética , Genoma Viral , Proteínas de Insectos/metabolismo , Espectrometría de Masas , Mutación , Fosfoproteínas/metabolismo , Fosforilación , Enfermedades de las Plantas/virología , Rhabdoviridae/patogenicidad , Serina , Nicotiana/virología , Replicación Viral/fisiología
18.
Microb Ecol ; 85(1): 121-136, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35039906

RESUMEN

Determinism and stochasticity in microbial community composition decisions have attracted wide attention. However, there is no consensus on their interrelationships and relative importance, and the mechanism controlling the interaction between the two ecological processes remains to be revealed. The interaction of the two ecological processes on the continental shelf of the South China Sea was studied by performing 16S rRNA gene amplicon sequencing on 90 sediments at multiple depths in five sites. Three nearshore sites have higher microbial diversity than those two close to the shelf margin. Different microbial composition was observed between sites and microbial composition of nearshore sites was positively correlated with total nitrogen, total sulfur, total organic carbon, and dissolved oxygen, while that of offshore was positively correlated with total carbon, salinity, and photosynthetically active radiation. The null model test showed that the community composition among layers of the same site and between nearby sites was mainly dominated by the homogeneous selection, while that between distant sites was mainly affected by dispersal limitation, which indicates that geographic scale influences the interactivities of determinism and stochasticity. Our research indicates that the balance of these two ecological processes along the geographic scale is mainly determined by the dispersal ability of microbes and environmental heterogeneity between areas. The study provides new insights into how deterministic and stochastic processes shape microbial community composition on the continental shelf.


Asunto(s)
Microbiota , ARN Ribosómico 16S/genética , Microbiota/genética , Carbono , China
19.
J Chem Inf Model ; 63(15): 4960-4969, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37499224

RESUMEN

Diabetes mellitus is a chronic metabolic disease, which causes an imbalance in blood glucose homeostasis and further leads to severe complications. With the increasing population of diabetes, there is an urgent need to develop drugs to treat diabetes. The development of artificial intelligence provides a powerful tool for accelerating the discovery of antidiabetic drugs. This work aims to establish a predictor called iPADD for discovering potential antidiabetic drugs. In the predictor, we used four kinds of molecular fingerprints and their combinations to encode the drugs and then adopted minimum-redundancy-maximum-relevance (mRMR) combined with an incremental feature selection strategy to screen optimal features. Based on the optimal feature subset, eight machine learning algorithms were applied to train models by using 5-fold cross-validation. The best model could produce an accuracy (Acc) of 0.983 with the area under the receiver operating characteristic curve (auROC) value of 0.989 on an independent test set. To further validate the performance of iPADD, we selected 65 natural products for case analysis, including 13 natural products in clinical trials as positive samples and 52 natural products as negative samples. Except for abscisic acid, our model can give correct prediction results. Molecular docking illustrated that quercetin and resveratrol stably bound with the diabetes target NR1I2. These results are consistent with the model prediction results of iPADD, indicating that the machine learning model has a strong generalization ability. The source code of iPADD is available at https://github.com/llllxw/iPADD.


Asunto(s)
Inteligencia Artificial , Hipoglucemiantes , Hipoglucemiantes/farmacología , Simulación del Acoplamiento Molecular , Algoritmos , Aprendizaje Automático
20.
Nature ; 547(7664): 453-457, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28678785

RESUMEN

Plasticity of the cell state has been proposed to drive resistance to multiple classes of cancer therapies, thereby limiting their effectiveness. A high-mesenchymal cell state observed in human tumours and cancer cell lines has been associated with resistance to multiple treatment modalities across diverse cancer lineages, but the mechanistic underpinning for this state has remained incompletely understood. Here we molecularly characterize this therapy-resistant high-mesenchymal cell state in human cancer cell lines and organoids and show that it depends on a druggable lipid-peroxidase pathway that protects against ferroptosis, a non-apoptotic form of cell death induced by the build-up of toxic lipid peroxides. We show that this cell state is characterized by activity of enzymes that promote the synthesis of polyunsaturated lipids. These lipids are the substrates for lipid peroxidation by lipoxygenase enzymes. This lipid metabolism creates a dependency on pathways converging on the phospholipid glutathione peroxidase (GPX4), a selenocysteine-containing enzyme that dissipates lipid peroxides and thereby prevents the iron-mediated reactions of peroxides that induce ferroptotic cell death. Dependency on GPX4 was found to exist across diverse therapy-resistant states characterized by high expression of ZEB1, including epithelial-mesenchymal transition in epithelial-derived carcinomas, TGFß-mediated therapy-resistance in melanoma, treatment-induced neuroendocrine transdifferentiation in prostate cancer, and sarcomas, which are fixed in a mesenchymal state owing to their cells of origin. We identify vulnerability to ferroptic cell death induced by inhibition of a lipid peroxidase pathway as a feature of therapy-resistant cancer cells across diverse mesenchymal cell-state contexts.


Asunto(s)
Glutatión Peroxidasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Cadherinas/metabolismo , Muerte Celular , Línea Celular Tumoral , Linaje de la Célula , Transdiferenciación Celular , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal , Humanos , Hierro/metabolismo , Peróxidos Lipídicos/metabolismo , Masculino , Melanoma/tratamiento farmacológico , Melanoma/enzimología , Melanoma/metabolismo , Melanoma/patología , Mesodermo/efectos de los fármacos , Mesodermo/enzimología , Mesodermo/metabolismo , Mesodermo/patología , Neoplasias/genética , Neoplasias/patología , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteómica , Proteínas Proto-Oncogénicas B-raf/genética , Reproducibilidad de los Resultados , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA