Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 19(21): e2300175, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36843265

RESUMEN

The construction of a protective layer for stabilizing anion redox reaction is the key to obtaining long cycling stability for Li-rich Mn-based cathode materials. However, the protection of the exposed surface/interface of the primary particles inside the secondary particles is usually ignored and difficult, let alone the investigation of the impact of the surface engineering of the internal primary particles on the cycling stability. In this work, an efficient method to regulate cycling stability is proposed by simply adjusting the distribution state of the boron nickel complexes coating layer. Theoretical calculation and experimental results display that the full-surface boron nickel complexes coating layer can not only passivate the activity of interface oxygen and improve its stability but also play the role of sharing voltage and protective layer to gradually activate the oxygen redox reaction during cycling. As a result, the elaborately designed cobalt-free Li-rich Mn-based cathode displays the highest discharge-specific capacity retentions of 91.1% after 400 cycles at 1 C and 94.3% even after 800 cycles at 5 C. In particular, the regulation strategy has well universality and is suitable for other high-capacity Li-rich cathode materials.

2.
J Phys Chem Lett ; 15(14): 3812-3819, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38557051

RESUMEN

All-solid-state thin-film lithium batteries (TFBs) with high voltage are crucial for powering microelectronics systems. However, the issues of interfacial instability and poor solid contact of cathode/electrolyte films have limited their application. In this work, the preferentially orientated LiCoO2 (LCO) nanocolumns and the LCO/LiPON/Li TFBs are fabricated by in situ heating sputtering. By introducing the LiF interlayer, the solid contact of the LCO/LiPON interface is improved, enabling the high-voltage TFBs. The elemental diffusion, morphology change, and interfacial deterioration are suppressed, as demonstrated by various in situ and ex situ tests. As a result, the LCO/LiF/LiPON/Li TFB exhibits a more stable and higher capacity compared to other TFBs. This work provides guidance to improve the solid contact of TFBs and increase the performance of all-solid-state lithium batteries.

3.
Small Methods ; : e2401490, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39382221

RESUMEN

Co-free Li-rich layered oxides (CFLLOs) with anionic redox activity are among the most promising cathode materials for high-energy-density and low-cost lithium-ion batteries (LIBs). However, irreversible oxygen release often causes severe structural deterioration, electrolyte decomposition, and the formation of unstable cathode-electrolyte interface (CEI) film with high impedance. Additionally, the elimination of cobalt elements further deteriorates the reaction kinetics, leading to reduced capacity and poor rate performance. Here, a multifunctional strategy is proposed, incorporating Li2MnO3 phase content regulation, micro-nano structure design, and heteroatom substitution. The increased content of Li2MnO3 phase enhances the capacity through oxygen redox. The smaller nanoscale primary particles induce greater tensile strain and introduce more grain boundaries, thereby improving the reaction kinetics and reactivity, while the larger micron-sized secondary particles help to reduce interfacial side reactions. Furthermore, Na⁺ doping modulates the local coordination environment of oxygen, stabilizing both the anion framework and the crystal structure. As a result, the designed cathode exhibits enhanced rate performance, delivering a capacity of 158 mAh g⁻¹ at 5.0 C and improved cyclic stability, with a high capacity retention of 99% after 400 cycles at 1.0 C. This multifunctional strategy holds great promise for advancing the practical application of CFLLOs in next-generation LIBs.

4.
Nanomicro Lett ; 16(1): 258, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073728

RESUMEN

Lithium-oxygen batteries (LOBs) with high energy density are a promising advanced energy storage technology. However, the slow cathodic redox kinetics during cycling causes the discharge products to fail to decompose in time, resulting in large polarization and battery failure in a short time. Therefore, a self-supporting interconnected nanosheet array network NiCo2O4/MnO2 with a Mott-Schottky heterostructure on titanium paper (TP-NCO/MO) is ingeniously designed as an efficient cathode catalyst material for LOBs. This heterostructure can accelerate electron transfer and influence the charge transfer process during adsorption of intermediate by triggering the interface disturbance at the heterogeneous interface, thus accelerating oxygen reduction and oxygen evolution kinetics and regulating product decomposition, which is expected to solve the above problems. The meticulously designed unique structural advantages enable the TP-NCO/MO cathode catalyst to exhibit an astounding ultra-long cycle life of 800 cycles and an extraordinarily low overpotential of 0.73 V. This study utilizes a simple method to cleverly regulate the morphology of the discharge products by constructing a Mott-Schottky heterostructure, providing important reference for the design of efficient catalysts aimed at optimizing the adsorption of reaction intermediates.

5.
Chem Sci ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39323527

RESUMEN

Layered oxide cathodes encounter structural challenges during cycling, prompting the exploration of an ingenious heterostructure strategy, which incorporates stable components into the layered structure as strain regulators to enhance materials cycle stability. Despite considerable research efforts, identifying suitable, convenient, and cost-effective materials and methods remains elusive. Herein, focused on lithium cobalt oxide (LiCoO2), we utilized its low-temperature polymorph as a strain-retardant embedded within a cathode. Our findings reveal that the low-temperature component, exhibiting zero-strain characteristic, adopts a complex configuration with a predominant lithiated spinel structure, also featuring both cubic-layered and typical-layered configurations. But this composite cathode exhibits a sluggish lithium-ion transport rate, attributed to Co&Li dislocation at the dual structural boundaries and the formation of cobalt(iii) oxide. This investigation presents a pioneering endeavor in employing heterostructure strategies, underscoring the critical role of such strategies in component selection, which ultimately propels the advancement of layered oxide cathode candidates for Li-ion battery technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA