Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 621(7979): 499-505, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37674075

RESUMEN

Two-dimensional (2D) van der Waals (vdW) heterostructures have attracted considerable attention in recent years1-5. The most widely used method of fabrication is to stack mechanically exfoliated micrometre-sized flakes6-18, but this process is not scalable for practical applications. Despite thousands of 2D materials being created, using various stacking combinations1-3,19-21, hardly any large 2D superconductors can be stacked intact into vdW heterostructures, greatly restricting the applications for such devices. Here we report a high-to-low temperature strategy for controllably growing stacks of multiple-layered vdW superconductor heterostructure (vdWSH) films at a wafer scale. The number of layers of 2D superconductors in the vdWSHs can be precisely controlled, and we have successfully grown 27 double-block, 15 triple-block, 5 four-block and 3 five-block vdWSH films (where one block represents one 2D material). Morphological, spectroscopic and atomic-scale structural analyses reveal the presence of parallel, clean and atomically sharp vdW interfaces on a large scale, with very little contamination between neighbouring layers. The intact vdW interfaces allow us to achieve proximity-induced superconductivity and superconducting Josephson junctions on a centimetre scale. Our process for making multiple-layered vdWSHs can easily be generalized to other situations involving 2D materials, potentially accelerating the design of next-generation functional devices and applications22-24.

2.
Nature ; 577(7789): 204-208, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31915394

RESUMEN

Graphene films grown by chemical vapour deposition have unusual physical and chemical properties that offer promise for applications such as flexible electronics and high-frequency transistors1-10. However, wrinkles invariably form during growth because of the strong coupling to the substrate, and these limit the large-scale homogeneity of the film1-4,11,12. Here we develop a proton-assisted method of chemical vapour deposition to grow ultra-flat graphene films that are wrinkle-free. Our method of proton penetration13-17 and recombination to form hydrogen can also reduce the wrinkles formed during traditional chemical vapour deposition of graphene. Some of the wrinkles disappear entirely, owing to the decoupling of van der Waals interactions and possibly an increase in distance from the growth surface. The electronic band structure of the as-grown graphene films shows a V-shaped Dirac cone and a linear dispersion relation within the atomic plane or across an atomic step, confirming the decoupling from the substrate. The ultra-flat nature of the graphene films ensures that their surfaces are easy to clean after a wet transfer process. A robust quantum Hall effect appears even at room temperature in a device with a linewidth of 100 micrometres. Graphene films grown by proton-assisted chemical vapour deposition should largely retain their intrinsic performance, and our method should be easily generalizable to other nanomaterials for strain and doping engineering.

3.
Skeletal Radiol ; 53(7): 1389-1397, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38289532

RESUMEN

OBJECTIVE: The aim of our study is to develop and validate a radiomics model based on ultrasound image features for predicting carpal tunnel syndrome (CTS) severity. METHODS: This retrospective study included 237 CTS hands (106 for mild symptom, 68 for moderate symptom and 63 for severe symptom). There were no statistically significant differences among the three groups in terms of age, gender, race, etc. The data set was randomly divided into a training set and a test set in a ratio of 7:3. Firstly, a senior musculoskeletal ultrasound expert measures the cross-sectional area of median nerve (MN) at the scaphoid-pisiform level. Subsequently, a recursive feature elimination (RFE) method was used to identify the most discriminative radiomic features of each MN at the entrance of the carpal tunnel. Eventually, a random forest model was employed to classify the selected features for prediction. To evaluate the performance of the model, the confusion matrix, receiver operating characteristic (ROC) curves, and F1 values were calculated and plotted correspondingly. RESULTS: The prediction capability of the radiomics model was significantly better than that of ultrasound measurements when 10 robust features were selected. The training set performed perfect classification with 100% accuracy for all participants, while the testing set performed accurate classification of severity for 76.39% of participants with F1 values of 80.00, 63.40, and 84.80 for predicting mild, moderate, and severe CTS, respectively. Comparably, the F1 values for mild, moderate, and severe CTS predicted based on the MN cross-sectional area were 76.46, 57.78, and 64.00, respectively.. CONCLUSION: This radiomics model based on ultrasound images has certain value in distinguishing the severity of CTS, and was slightly superior to using only MN cross-sectional area for judgment. Although its diagnostic efficacy was still inferior to that of neuroelectrophysiology. However, this method was non-invasive and did not require additional costs, and could provide additional information for clinical physicians to develop diagnosis and treatment plans.


Asunto(s)
Síndrome del Túnel Carpiano , Índice de Severidad de la Enfermedad , Ultrasonografía , Humanos , Síndrome del Túnel Carpiano/diagnóstico por imagen , Femenino , Masculino , Ultrasonografía/métodos , Estudios Retrospectivos , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Adulto , Anciano , Interpretación de Imagen Asistida por Computador/métodos , Radiómica
4.
J Clin Ultrasound ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830836

RESUMEN

The tubular strips of anechoic areas and multiple curved strong echoes were seen in the lump-characteristic manifestations of breast hemangioma.

5.
Nano Lett ; 23(17): 8203-8210, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37584336

RESUMEN

There is a lack of deep understanding of hydrogen intercalation into graphite due to many challenges faced during characterization of the systems. Therefore, a suitable route to trap isolated hydrogen molecules (H2) between the perfect graphite lattices needs to be found. Here we realize the formation of hydrogen bubbles in graphite with controllable density, size, and layer number. We find that the molecular H2 cannot be diffused between nor escape from the defect-free graphene lattices, and it remains stable in the pressurized bubbles up to 400 °C. The internal pressure of H2 inside the bubbles is strongly temperature dependent, and it decreases as the temperature rises. The proton permeation rate can be estimated at a specific plasma power. The producing method of H2 bubbles offers a useful way for storing hydrogen in layered materials, and these materials provide a prospective research platform for studying nontrivial quantum effects in confined H2.

6.
J Ultrasound Med ; 42(7): 1499-1508, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36565451

RESUMEN

OBJECTIVES: The ultrasound diagnosis of mild carpal tunnel syndrome (CTS) is challenging. Radiomics can identify image information that the human eye cannot recognize. The purpose of our study was to explore the value of ultrasound image-based radiomics in the diagnosis of mild CTS. METHODS: This retrospective study included 126 wrists in the CTS group and 88 wrists in the control group. The radiomics features were extracted from the cross-sectional ultrasound images at the entrance of median nerve carpal tunnel, and the modeling was based on robust features. Two radiologists with different experiences diagnosed CTS according to two guidelines. The area under receiver (AUC) operating characteristic curve, sensitivity, specificity, and accuracy were used to evaluate the diagnostic efficacy of the two radiologists and the radiomics model. RESULTS: According to guideline one, the AUC values of the two radiologists for CTS were 0.72 and 0.67, respectively; according to guideline two, the AUC were 0.73 and 0.68, respectively. The radiomics model achieved the best accuracy when 16 important robust features were selected. The AUC values of training set and test set were 0.92 and 0.90, respectively. CONCLUSIONS: The radiomics label based on ultrasound images had excellent diagnostic efficacy for mild CTS. It is expected to help radiologists to identify early CTS patients as soon as possible, especially for inexperienced doctors.


Asunto(s)
Síndrome del Túnel Carpiano , Humanos , Síndrome del Túnel Carpiano/diagnóstico por imagen , Estudios Retrospectivos , Estudios Transversales , Nervio Mediano/diagnóstico por imagen , Ultrasonografía/métodos , Sensibilidad y Especificidad
7.
J Clin Ultrasound ; 51(7): 1198-1204, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37313858

RESUMEN

PURPOSE: By constructing a prediction model of carpal tunnel syndrome (CTS) based on ultrasound images, it can automatically and accurately diagnose CTS without measuring the median nerve cross-sectional area (CSA). METHODS: A total of 268 wrists ultrasound images of 101 patients diagnosed with CTS and 76 controls in Ningbo NO.2 Hospital from December 2021 to August 2022 were retrospectively analyzed. The radiomics method was used to construct the Logistic model through the steps of feature extraction, feature screening, reduction, and modeling. The area under the receiver operating characteristic curve was calculated to evaluate the performance of the model, and the diagnostic efficiency of the radiomics model was compared with two radiologists with different experience. RESULTS: The 134 wrists in the CTS group included 65 mild CTS, 42 moderate CTS, and 17 severe CTS. In the CTS group, 28 wrists median nerve CSA were less than the cut-off value, 17 wrists were missed by Dr. A, 26 wrists by Dr. B, and only 6 wrists were missed by radiomics model. A total of 335 radiomics features were extracted from each MN, of which 10 features were significantly different between compressed and normal nerves, and were used to construct the model. The area under curve (AUC) value, sensitivity, specificity, and accuracy of the radiomics model in the training set and testing set were 0.939, 86.17%, 87.10%, 86.63%, and 0.891, 87.50%, 80.49%, and 83.95%, respectively. The AUC value, sensitivity, specificity, and accuracy of the two doctors in the diagnosis of CTS were 0.746, 75.37%, 73.88%, 74.63% and 0.679, 68.66%, 67.16%, and 67.91%, respectively. The radiomics model was superior to the two-radiologist diagnosis, especially when there was no significant change in CSA. CONCLUSION: Radiomics based on ultrasound images can quantitatively analyze the subtle changes in the median nerve, and can automatically and accurately diagnose CTS without measuring CSA, especially when there was no significant change in CSA, which was better than radiologists.


Asunto(s)
Síndrome del Túnel Carpiano , Nervio Mediano , Humanos , Nervio Mediano/diagnóstico por imagen , Síndrome del Túnel Carpiano/diagnóstico por imagen , Estudios Retrospectivos , Sensibilidad y Especificidad , Ultrasonografía/métodos
8.
J Clin Ultrasound ; 51(9): 1536-1543, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37712556

RESUMEN

BACKGROUND: Female breast cancer has surpassed lung cancer as the most common cancer, and is also the main cause of cancer death for women worldwide. Breast cancer <1 cm showed excellent survival rate. However, the diagnosis of minimal breast cancer (MBC) is challenging. OBJECTIVE: The purpose of our research is to develop and validate an radiomics model based on ultrasound images for early recognition of MBC. METHODS: 302 breast masses with a diameter of <10 mm were retrospectively studied, including 159 benign and 143 malignant breast masses. The radiomics features were extracted from the gray-scale ultrasound image of the largest face of each breast mass. The maximum relevance minimum reduncancy and recursive feature elimination methods were used to screen. Finally, 10 features with the most discriminating value were selected for modeling. The random forest was used to establish the prediction model, and the rad-score of each mass was calculated. In order to evaluate the effectiveness of the model, we calculated and compared the area under the curve (AUC) value, sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of the model and three groups with different experience in predicting small breast masses, and drew calibration curves and decision curves to test the stability and consistency of the model. RESULTS: When we selected 10 radiomics features to calculate the rad-score, the prediction efficiency was the best, the AUC values for the training set and testing set were 0.840 and 0.793, which was significantly better than the insufficient experience group (AUC = 0.673), slightly better than the moderate experience group (AUC = 0.768), and was inferior to the experienced group (AUC = 0.877). The calibration curve and decision curve also showed that the radiomics model had satisfied stability and clinical application value. CONCLUSION: The radiomics model based on ultrasound image features has a satisfied predictive ability for small breast masses, and is expected to become a potential tool for the diagnosis of MBC, and it is a zero cost (in terms of patient participation and imaging time).


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Femenino , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Estudios Retrospectivos , Ultrasonografía , Área Bajo la Curva
9.
Soft Matter ; 18(14): 2776-2781, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35315855

RESUMEN

The shortcomings of proteins, such as poor stability in biological environments, the impermeability of the membrane and the susceptibility to enzymolysis, restrict their potential applications. Therefore, constructing universal nanocarriers for intracellular delivery of a variety of proteins remains a great challenge. In this work, gallic acid (GA) and L-lysine were used as starting materials to synthesize carbon dots (CDs). The CDs were used as carriers to interact with bovine serum albumin (BSA), enhanced green fluorescent protein (EGFP) and glucose oxidase (GOx) via supramolecular interaction to construct CDs-protein nanocomposites CDs-BSA, CDs-EGFP and CDs-GOx. Furthermore, CDs-EGFP and CDs-GOx can achieve intracellular protein delivery and maintain 89% of the biological activity of GOx. In this work, the latency of CDs is projected as a universal platform for effective intracellular delivery of proteins.


Asunto(s)
Nanocompuestos , Puntos Cuánticos , Carbono , Albúmina Sérica Bovina
10.
Nanotechnology ; 34(7)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36384029

RESUMEN

The tuning of band gap is very important for the application of two-dimensional (2D) materials in optoelectronic devices. Alloying of 2D transition metal dichalcogenides (TMDCs) is an important way to tune the wide band gap. In this study, we report a multi-step vapor deposition method to grow monolayer TMDC ternary alloy films with wafer scale, including Mo1-xWxS2, Mo1-xWxSe2and MoS2xSe2(1-x), which are accurately controllable in the elemental proportion (xis from 0 to 1). The band gap of the three 2D ternary alloy materials are continuously tuned for the whole range of metal and chalcogen compositions. The metal compositions are controlled by the as-deposited thickness. Raman, photoluminescence, elemental maps and TEM show the high spatial homogeneity in the compositions and optical properties across the whole wafer. The band gap can be continuously tuned from 1.86 to 1.99 eV for Mo1-xWxS2, 1.56 to 1.65 eV for Mo1-xWxSe2, 1.56 to 1.86 eV for MoS2xSe2(1-x). Electrical transport measurements indicate that Mo1-xWxS2and MoS2xSe2(1-x)monolayers shown-type semiconductor behaviors, and the carrier types of Mo1-xWxSe2can be tuned asn-type, bipolar andp-type. Moreover, this control process can be easily generalized to other 2D alloy films, even to quaternary or multi-element alloy materials. Our study presents a promising route for the preparation of large-scale homogeneous monolayer TMDC alloys and the application for future functional devices.

11.
Curr Microbiol ; 79(6): 182, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35508821

RESUMEN

Escherichia coli (E. coli) is an important pathogen that causes diarrhea and death in piglets. In this work, whole genome sequencing of two E. coli strains (ZB-1, ZWW-1) isolated from Saba pigs. And focus on the relationship between drug resistance, pathogenic phenotype and genotype of the two strains. This study analyzed the drug susceptibility of the two strains. The LD50 values, tissue bacterial load and intestinal pathological changes in mice infected with the two strains. The differences in gene functions such as drug resistance, virulence, and unique genes between the two strains, as well as the genetic evolutionary relationship of housekeeping genes were analyzed. The results showed that the two strains had the same resistance phenotype to most drugs. The LD50 value, tissue load, and pathological changes in mice infected with strain ZB-1 revealed that this strain was more virulent and pathogenic than strain ZWW-1. In addition, the housekeeping genes contained in the two strains are in the same large branch as E. coli of different species, and the genetic evolution is stable. All of them carry EPEC-type strain-specific virulence genes escV and ent, indicating that they are all new members of EPEC-type strains. This study laid the foundation for understanding the genetic background and biological characteristics of E. coli from Saba pigs.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Animales , Diarrea/microbiología , Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Proteínas de Escherichia coli/genética , Ratones , Filogenia , Porcinos , Virulencia/genética , Secuenciación Completa del Genoma
12.
Microb Pathog ; 157: 105012, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34062228

RESUMEN

Classical swine fever (CSF) is one of the most epidemic viral diseases in swine industry. The causative pathogen is CSF virus (CSFV), a small enveloped RNA virus of Flaviviridae family. Claudin-1 was reported to be involved in the infections of a number of viruses, including many from Flaviviridae family, but no studies have investigated the role of porcine claudin-1 during CSFV infection in PK-15 cells. In this study, on the one hand, we demonstrated that CSFV infection reduced the claudin-1 expression at both mRNA and protein levels; on the other hand, CSFV infection was enhanced after claudin-1 knockdown, but inhibited by claudin-1 overexpression in a dose-dependent manner. Furthermore, negative correlation was demonstrated between the claudin-1 expression and CSFV titer. In conclusion, claudin-1 might be a barrier for CSFV infection in PK-15 cells, while CSFV bypasses the barrier through lysosome mediated degradation of claudin-1, which could be repressed by bafilomycin A1. Although the elaborate mechanisms how claudin-1 plays its roles in CSFV infection require further investigations, this study may advance our understanding of the molecular host-pathogen interaction mechanisms underlying CSFV infection and suggests enhancement of porcine claudin-1 as a potential preventive or therapeutic strategy for CSF control.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Animales , Línea Celular , Claudina-1/genética , Porcinos , Replicación Viral
13.
Nanotechnology ; 32(23)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33607638

RESUMEN

Insufficient mechanical properties of stereolithography (SLA)-printed architected polymer metamaterial limits its wide applications such as in the areas of biomedicine and aerospace. One effective solution is to reinforce the structures with micro- or nano- fibers/particles, but their interfaces are critical for the reinforcement. In this work, a carbon fiber-graphene oxide (CF-GO) polymer composite resin and a mild annealing postprocess have been rationally designed and applied into the manufacturing of oct-truss (OCT) lattices.In situcarbon fiber pulling-out experiment was conducted to exhibit the improve effect of GO on the crosslink of the CF and the polymer matrix interface. We found that the maximum reinforcement was realized when the CF-GO (CF: GO is about 3: 1) content is about 0.8 wt%, followed with annealing. Compared with pure polymer lattices, the compression strength of the CF-GO polymer OCT lattices has been significantly increased from ∼0.22 to ∼2.4 MPa, almost 10 times enhancement. Importantly, the compression strength of the CF-GO polymer OCT lattice (3.08 MPa) further increased by ∼30% after optimized annealing. This work suggests an efficient reinforce strategy for SLA-printed metamaterials, and thus can be valuable for advancing various practical applications of mechanical metamaterials.

14.
Nano Lett ; 20(11): 8408-8414, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33064495

RESUMEN

The interfacial charge transfer from the substrate may influence the electronic structure of the epitaxial van der Waals (vdW) monolayers and, thus, their further technological applications. For instance, the freestanding Sb monolayer in the puckered honeycomb phase (α-antimonene), the structural analogue of black phosphorene, was predicted to be a semiconductor, but the epitaxial one behaves as a gapless semimetal when grown on the Td-WTe2 substrate. Here, we demonstrate that interface engineering can be applied to tune the interfacial charge transfer and, thus, the electron band of the epitaxial monolayer. As a result, the nearly freestanding (semiconducting) α-antimonene monolayer with a band gap of ∼170 meV was successfully obtained on the SnSe substrate. Furthermore, a semiconductor-semimetal crossover is observed in the bilayer α-antimonene. This study paves the way toward modifying the electron structure in two-dimensional vdW materials through interface engineering.

15.
Nat Mater ; 18(6): 602-607, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30858568

RESUMEN

Two-dimensional transition metal selenides (TMSs) possess fascinating physical properties. However, many as-prepared TMSs are environmentally unstable and limited in sample size, which greatly hinder their wide applications in high-performance electrical devices. Here we develop a general two-step vapour deposition method and successfully grow different TMS films with controllable thickness, wafer size and high quality. The superconductivity of the grown NbSe2 film is comparable with sheets exfoliated from bulk materials, and can maintain stability after a variety of harsh treatments, which are ascribed to the absence of oxygen during the whole growth process. Such environmental stability can greatly simplify the fabrication procedure for device applications, and should be of both fundamental and technological significance in developing TMS-based devices.

16.
Nature ; 505(7482): 190-4, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24336218

RESUMEN

Graphene has attracted worldwide interest since its experimental discovery, but the preparation of large-area, continuous graphene film on SiO2/Si wafers, free from growth-related morphological defects or transfer-induced cracks and folds, remains a formidable challenge. Growth of graphene by chemical vapour deposition on Cu foils has emerged as a powerful technique owing to its compatibility with industrial-scale roll-to-roll technology. However, the polycrystalline nature and microscopic roughness of Cu foils means that such roll-to-roll transferred films are not devoid of cracks and folds. High-fidelity transfer or direct growth of high-quality graphene films on arbitrary substrates is needed to enable wide-ranging applications in photonics or electronics, which include devices such as optoelectronic modulators, transistors, on-chip biosensors and tunnelling barriers. The direct growth of graphene film on an insulating substrate, such as a SiO2/Si wafer, would be useful for this purpose, but current research efforts remain grounded at the proof-of-concept stage, where only discontinuous, nanometre-sized islands can be obtained. Here we develop a face-to-face transfer method for wafer-scale graphene films that is so far the only known way to accomplish both the growth and transfer steps on one wafer. This spontaneous transfer method relies on nascent gas bubbles and capillary bridges between the graphene film and the underlying substrate during etching of the metal catalyst, which is analogous to the method used by tree frogs to remain attached to submerged leaves. In contrast to the previous wet or dry transfer results, the face-to-face transfer does not have to be done by hand and is compatible with any size and shape of substrate; this approach also enjoys the benefit of a much reduced density of transfer defects compared with the conventional transfer method. Most importantly, the direct growth and spontaneous attachment of graphene on the underlying substrate is amenable to batch processing in a semiconductor production line, and thus will speed up the technological application of graphene.

17.
Nanotechnology ; 30(47): 475708, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31507271

RESUMEN

The excellent mechanical properties of single- and few-layer graphene have been well-quantified and evidenced by computational methods and local indentation measurements. However, there are less experimental reports on the in-plane mechanical properties of multilayer graphene sheets, despite many practical applications in flexible electronic and energy devices (e.g. graphene flexible electronic display, battery, and storage devices) are actually based on these thicker nanosheets. Here, in-plane fracture behaviors of multilayer graphene nanosheets with thicknesses between ∼10 and 300 nm (∼10-1000 layers) are characterized and quantified by in situ scanning electron microscopy and transmission electron microscopy under tensile loading. We found that, generally, the fracture strengths of graphene nanosheets decrease as the thickness (or layers) increases; however, the fracture strain of thinner graphene sheets is less than that of thicker sheets. The fracture process of the thicker nanosheets includes the initial flattened stage, the stable elastic stage, and the rapid fracture with brittle characteristics, while the thinner nanosheets show obvious delamination between the atomic layers at fracture. This work provides critical experimental insights into the tensile fracture behavior of multilayer two-dimensional materials and a better understanding on their realistic mechanical performance for potential flexible device and composite applications.

18.
Nanotechnology ; 29(29): 295703, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-29697061

RESUMEN

Silver (Ag) nanowires have great potential to be used in the flexible electronics industry for their applications in flexible, transparent conductors due to high conductivity and light reflectivity. Those applications always involve mechanical loading and deformations, which requires an in-depth understanding of their mechanical behavior and performance under loadings. However, current understanding on the mechanical properties of Ag nanowires is limited, especially on their size-dependent fracture behavior. In this work, mechanical properties of Ag nanowires with diameters ranging from 50 to 300 nm were systematically studied by in situ TEM tensile testing for the first time. The size effect was clearly found, with the increasing of the diameter of Ag nanowires, the ultimate tensile stress decreased. More importantly, the fracture behavior of Ag nanowire was studied and a brittle-to-ductile transition in fracture behavior was observed at the diameters around 100 nm which could be attributed to the dislocation activities within the geometry confinement. This work could give insights for understanding nanosized Ag wires and the design of Ag nanowire-based flexible devices and touchable panels.

19.
Virus Genes ; 53(3): 392-399, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28130636

RESUMEN

Outbreaks of pseudorabies (PRs) have occurred in Yunnan, China, which caused significant economic loss. To determine the prevalence and origin of PR in Yunnan, especially among vaccinated pigs, overall 791 samples of blood, tissue, semen, and sera were analyzed by serological methods, PCR, and sequence analysis of gD gene. Detection with viral gI antibody or PCR showed that the yearly positive rates of PR virus (PRV) in Yunnan from 2010 to 2014 were 48.15, 21.26, 2.17, 5.22, and 0.35%, respectively, with an average of 15.43%. In general, the incidence declined through the period of 2010-2014 probably due to the application of PRV eradication strategies. A phylogenetic tree was constructed based on the complete sequence of gD gene, with all strains clustered into two independent clades, i.e., Asian and European-American clades. The virus isolates from Henan, Tianjin, Heilongjiang, Sichuan, Shandong, Fujian, Xinjiang, Hubei, Guangdong, and Yunnan fell into Asian group, which harbored South Korea isolate. Four Yunnan virus isolates together with South Korean Namyangju fell into in the European-American clade. It showed that PR was pandemic as there was not a clear clue about the geographical origin of the PRV isolates in China since 2010.


Asunto(s)
Herpesvirus Suido 1/genética , Epidemiología Molecular , Filogenia , Seudorrabia/virología , Análisis de Secuencia , Proteínas del Envoltorio Viral/genética , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/aislamiento & purificación , Secuencia de Bases , China/epidemiología , Clonación Molecular , ADN Viral , Brotes de Enfermedades , Frecuencia de los Genes , República de Corea , Pruebas Serológicas , Sus scrofa , Porcinos , Enfermedades de los Porcinos/virología
20.
J Phys Condens Matter ; 36(33)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38722340

RESUMEN

Graphene has attracted wide attentions since its successfully exfoliation. Honeycombsp2carbon lattice and Dirac semi-metal band structure make graphene a promising material with excellent mechanical strength, thermal conductivity, and carrier mobility. However, the absence of intrinsic bandgap limits its application in semiconductor. Defects in graphene is supposed to modify its band structure and lead to an opened bandgap. Many methods have been demonstrated to introduce defects into graphene, such as chemical reaction, plasma, electron beam, and laser. However, the species of defects are mostly uncontrollable in most treatment processes. In this study, we report three kinds of defects can be controllably induced in graphene via hydrogen (H2) and argon (Ar) plasma. With different parameter and feeding gas, hydrogenated graphene, graphene nanomesh and graphene with vacancies can be well obtained. The defect density can be precisely controlled by tuning plasma power and irradiation time. Morphological, spectroscopic, and electrical characterizations are performed to systematically investigate the defect evolution. Graphene nanomesh and graphene with vacancies show obvious difference for roughness and coverage, whereas the morphology of hydrogenated graphene remains similar with that of as-prepared graphene. For hydrogenated graphene, an opened bandgap of ∼20 meV is detected. For graphene nanomesh and graphene with vacancies, the semiconductive on/off behaviors are observed. We believe this work can provide more details of plasma-induced defects and assist the application of graphene in semiconductor industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA