Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neuroeng Rehabil ; 21(1): 96, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38845000

RESUMEN

BACKGROUND: Telerehabilitation is a promising avenue for improving patient outcomes and expanding accessibility. However, there is currently no spine-related assessment for telerehabilitation that covers multiple exercises. METHODS: We propose a wearable system with two inertial measurement units (IMUs) to identify IMU locations and estimate spine angles for ten commonly prescribed spinal degeneration rehabilitation exercises (supine chin tuck head lift rotation, dead bug unilateral isometric hold, pilates saw, catcow full spine, wall angel, quadruped neck flexion/extension, adductor open book, side plank hip dip, bird dog hip spinal flexion, and windmill single leg). Twelve healthy subjects performed these spine-related exercises, and wearable IMU data were collected for spine angle estimation and IMU location identification. RESULTS: Results demonstrated average mean absolute spinal angle estimation errors of 2.59 ∘ and average classification accuracy of 92.97%. The proposed system effectively identified IMU locations and assessed spine-related rehabilitation exercises while demonstrating robustness to individual differences and exercise variations. CONCLUSION: This inexpensive, convenient, and user-friendly approach to spine degeneration rehabilitation could potentially be implemented at home or provide remote assessment, offering a promising avenue to enhance patient outcomes and improve accessibility for spine-related rehabilitation. TRIAL REGISTRATION:  No. E2021013P in Shanghai Jiao Tong University.


Asunto(s)
Terapia por Ejercicio , Columna Vertebral , Telerrehabilitación , Humanos , Masculino , Telerrehabilitación/instrumentación , Adulto , Femenino , Columna Vertebral/fisiología , Terapia por Ejercicio/métodos , Terapia por Ejercicio/instrumentación , Dispositivos Electrónicos Vestibles , Adulto Joven , Acelerometría/instrumentación , Acelerometría/métodos , Fenómenos Biomecánicos
2.
Angew Chem Int Ed Engl ; 63(30): e202405344, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38753429

RESUMEN

Peptide cyclization has dramatic effects on a variety of important properties, enhancing metabolic stability, limiting conformational flexibility, and altering cellular entry and intracellular localization. The hydrophilic, polyfunctional nature of peptides creates chemoselectivity challenges in macrocyclization, especially for natural sequences without biorthogonal handles. Herein, we describe a gaseous sulfonyl chloride derived reagent that achieves amine-amine, amine-phenol, and amine-aniline crosslinking through a minimalist linchpin strategy that affords macrocyclic urea or carbamate products. The cyclization reaction is metal-mediated and involves a novel application of sulfine species that remains unexplored in aqueous or biological contexts. The aqueous method delivers unique cyclic or bicyclic topologies directly from a variety of natural bioactive peptides without the need for protecting-group strategies.


Asunto(s)
Aminas , Ciclización , Aminas/química , Péptidos/química , Gases/química , Péptidos Cíclicos/química , Péptidos Cíclicos/síntesis química , Indicadores y Reactivos/química
3.
BMC Cancer ; 23(1): 1029, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875823

RESUMEN

Necroptosis has been reported to be involved in cancer progression and associated with cancer prognosis. However, the prognostic values of necroptosis-related genes (NRGs) in hepatocellular carcinoma (HCC) remain largely unknown. This study aimed to build a signature on the basis of NRGs to evaluate the prognosis of HCC patients. In this study, using bioinformatic analyses of transcriptome sequencing data of HCC (n = 370) from The Cancer Genome Atlas (TCGA) database, 63 differentially expressed NRGs between HCC and adjacent normal tissues were determined. 24 differentially expressed NRGs were found to be related with overall survival (OS). Seven optimum NRGs, determined using Lasso regression and multivariate Cox regression analysis, were used to construct a new prognostic risk signature for predicting the prognosis of HCC patients. Then survival status scatter plots and survival curves demonstrated that the prognosis of patients with high-Riskscore was worse. The prognostic value of this 7-NRG signature was validated by the International Cancer Genome Consortium (ICGC) cohort and a local cohort (Wenzhou, China). Notably, Riskscore was defined as an independent risk factor for HCC prognosis using multivariate cox regression analysis. Immune infiltration analysis suggested that higher macrophage infiltration was found in patients in the high-risk group. Finally, enhanced 7 NRGs were found in HCC tissues by immunohistochemistry. In conclusion, a novel 7-NRG prognostic risk signature is generated, which contributes to the prediction in the prognosis of HCC patients for the clinicians.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Necroptosis/genética , Neoplasias Hepáticas/genética , China , Biología Computacional , Pronóstico
4.
Sensors (Basel) ; 23(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36905065

RESUMEN

An error-related potential (ErrP) occurs when people's expectations are not consistent with the actual outcome. Accurately detecting ErrP when a human interacts with a BCI is the key to improving these BCI systems. In this paper, we propose a multi-channel method for error-related potential detection using a 2D convolutional neural network. Multiple channel classifiers are integrated to make final decisions. Specifically, every 1D EEG signal from the anterior cingulate cortex (ACC) is transformed into a 2D waveform image; then, a model named attention-based convolutional neural network (AT-CNN) is proposed to classify it. In addition, we propose a multi-channel ensemble approach to effectively integrate the decisions of each channel classifier. Our proposed ensemble approach can learn the nonlinear relationship between each channel and the label, which obtains 5.27% higher accuracy than the majority voting ensemble approach. We conduct a new experiment and validate our proposed method on a Monitoring Error-Related Potential dataset and our dataset. With the method proposed in this paper, the accuracy, sensitivity and specificity were 86.46%, 72.46% and 90.17%, respectively. The result shows that the AT-CNNs-2D proposed in this paper can effectively improve the accuracy of ErrP classification, and provides new ideas for the study of classification of ErrP brain-computer interfaces.


Asunto(s)
Algoritmos , Interfaces Cerebro-Computador , Humanos , Electroencefalografía/métodos , Redes Neurales de la Computación , Sensibilidad y Especificidad
5.
Opt Express ; 30(15): 26018-26026, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-36236800

RESUMEN

Processing of mesoscale structures of soft matter and liquid is of great importance in both science and engineering. In this work, we introduce the concept of laser-assisted micromachining to this field and inject a certain number of microdroplets into a preselected location on the surface of a liquid crystal drop through laser irradiation. The impact of laser energy on the triggered injection is discussed. The sequentially injected microdroplets are spontaneously captured by the defect ring in the host drop and transported along this defect track as micro-cargos. By precisely manipulating the laser beam, the tailored injection of droplets is achieved, and the injected droplets self-assemble into one necklace ring within the host drop. The result provides a bottom-up approach for the in-situ and three-dimensional microfabrication of droplet structure of soft matter using a laser beam, which may be applicable in the development of optical and photonic devices.

6.
Phys Rev Lett ; 129(8): 087002, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36053703

RESUMEN

Transition metal dichalcogenides like 2H-NbSe_{2} in their two-dimensional (2D) form exhibit Ising superconductivity with the quasiparticle spins being firmly pinned in the direction perpendicular to the basal plane. This enables them to withstand exceptionally high magnetic fields beyond the Pauli limit for superconductivity. Using field-angle-resolved magnetoresistance experiments for fields rotated in the basal plane we investigate the field-angle dependence of the upper critical field (H_{c2}), which directly reflects the symmetry of the superconducting order parameter. We observe a sixfold nodal symmetry superposed on a twofold symmetry. This agrees with theoretical predictions of a nodal topological superconducting phase near H_{c2}, together with a nematic superconducting state. We demonstrate that in NbSe_{2} such unconventional superconducting states can arise from the presence of several competing superconducting channels.

7.
Angew Chem Int Ed Engl ; 61(13): e202115104, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-34985795

RESUMEN

Self-assembly of cyclohexyl cyclic (alkyl)(amino)carbenes (cyCAAC) can be realized and reversibly switched from a close-packed trimer phase to a chainlike dimer phase, enabled by the ring-flip of the cyclohexyl wingtip. Multiple methods including scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations identified a distinct isomer (axial or equatorial chair conformer) in each phase, and consequently support the conclusion regarding the determination of molecular surface geometry on the self-assembly of cyCAAC. Moreover, various substrates such as Ag (111) and Cu (111) are tested to elucidate the importance of cyCAAC-surface interactions on cyCAAC based nanopatterns. These investigations of patterned surfaces prompted a deep understanding of cyCAAC binding mode, surface geometry and reversible self-assembly, which are of paramount significance in the areas of catalysis, biosensor design and surface functionalization.

8.
Comput Phys Commun ; 204: 132-140, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27570250

RESUMEN

We have tested the scalability of three supercomputers: the Tianhe-2, Stampede and CS-Storm with multiscale fluid-platelet simulations, in which a highly-resolved and efficient numerical model for nanoscale biophysics of platelets in microscale viscous biofluids is considered. Three experiments involving varying problem sizes were performed: Exp-S: 680,718-particle single-platelet; Exp-M: 2,722,872-particle 4-platelet; and Exp-L: 10,891,488-particle 16-platelet. Our implementations of multiple time-stepping (MTS) algorithm improved the performance of single time-stepping (STS) in all experiments. Using MTS, our model achieved the following simulation rates: 12.5, 25.0, 35.5 µs/day for Exp-S and 9.09, 6.25, 14.29 µs/day for Exp-M on Tianhe-2, CS-Storm 16-K80 and Stampede K20. The best rate for Exp-L was 6.25 µs/day for Stampede. Utilizing current advanced HPC resources, the simulation rates achieved by our algorithms bring within reach performing complex multiscale simulations for solving vexing problems at the interface of biology and engineering, such as thrombosis in blood flow which combines millisecond-scale hematology with microscale blood flow at resolutions of micro-to-nanoscale cellular components of platelets. This study of testing the performance characteristics of supercomputers with advanced computational algorithms that offer optimal trade-off to achieve enhanced computational performance serves to demonstrate that such simulations are feasible with currently available HPC resources.

9.
ACS Appl Mater Interfaces ; 16(7): 9012-9019, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38331712

RESUMEN

Perovskite LEDs (PeLEDs) have emerged as a next-generation light-emitting technology. Recent breakthroughs were made in achieving highly stable near-infrared and green PeLEDs. However, the operational lifetimes (T50) of visible PeLEDs under high current densities (>10 mA cm-2) remain unsatisfactory (normally <100 h), limiting the possibilities in solid-state lighting and AR/VR applications. This problem becomes more pronounced for mixed-halide (e.g., red and blue) perovskite emitters in which critical challenges such as halide segregation and spectral instability are present. Here, we demonstrate bright and stable red PeLEDs based on mixed-halide perovskites, showing measured T50 lifetimes of up to ∼357 h at currents of ≥25 mA cm-2, a record for the operational stability of visible PeLEDs under high current densities. The devices produce intense and stable emission with a maximum luminance of 28,870 cd m-2 (radiance: 1584 W sr-1 m-2), which is record-high for red PeLEDs. Key to this demonstration is the introduction of sulfonamide, a dipolar molecular stabilizer that effectively interacts with the ionic species in the perovskite emitters. It suppresses halide segregation and migration into the charge-transport layers, resulting in enhanced stability and brightness of the mixed-halide PeLEDs. These results represent a substantial step toward bright and stable PeLEDs for emerging applications.

10.
Commun Chem ; 6(1): 270, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082090

RESUMEN

Adatom engineering represents a highly promising opportunity for enhancing electrochemical CO reduction reaction (CORR). However, the aggregation of adatoms under typical reaction conditions often leads to a decline in catalyst activity. Recent studies have revealed that N-heterocyclic carbene (NHC) can stabilize surface adatoms. Herein, based on density functional theory calculations, we reveal a significant enhancement in the catalytic activity of Cu adatoms decorated with NHC molecules for CORR. The NHC decoration strengthens the interaction between the dxy orbital of the Cu adatom and the px orbital of the C atom, reducing the energy barriers in both CO hydrogenation and C-C coupling steps. Moreover, the CORR catalytic activity of the NHC decorated adatom can be further improved by tuning the side groups of NHC molecules. These results provide insights for the design of efficient CORR catalysts and offer a theoretical framework that can be extended to other hydrogenation reactions.

11.
J Ginseng Res ; 47(4): 534-542, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37397418

RESUMEN

Background: Ginsenoside Rg1, a bioactive component of Ginseng, has demonstrated anti-inflammatory, anti-cancer, and hepatoprotective effects. It is known that the epithelial-mesenchymal transition (EMT) plays a key role in the activation of hepatic stellate cells (HSCs). Recently, Rg1 has been shown to reverse liver fibrosis by suppressing EMT, although the mechanism of Rg1-mediated anti-fibrosis effects is still largely unclear. Interestingly, Smad7, a negative regulator of the transforming growth factor ß (TGF-ß) pathway, is often methylated during liver fibrosis. Whether Smad7 methylation plays a vital role in the effects of Rg1 on liver fibrosis remains unclear. Methods: Anti-fibrosis effects were examined after Rg1 processing in vivo and in vitro. Smad7 expression, Smad7 methylation, and microRNA-152 (miR-152) levels were also analyzed. Results: Rg1 significantly reduced the liver fibrosis caused by carbon tetrachloride, and reduced collagen deposition was also observed. Rg1 also contributed to the suppression of collagenation and HSC reproduction in vitro. Rg1 caused EMT inactivation, reducing Desmin and increasing E-cadherin levels. Notably, the effect of Rg1 on HSC activation was mediated by the TGF-ß pathway. Rg1 induced Smad7 expression and demethylation. The over-expression of DNA methyltransferase 1 (DNMT1) blocked the Rg1-mediated inhibition of Smad7 methylation, and miR-152 targeted DNMT1. Further experiments suggested that Rg1 repressed Smad7 methylation via miR-152-mediated DNMT1 inhibition. MiR-152 inhibition reversed the Rg1-induced promotion of Smad7 expression and demethylation. In addition, miR-152 silencing led to the inhibition of the Rg1-induced EMT inactivation. Conclusion: Rg1 inhibits HSC activation by epigenetically modulating Smad7 expression and at least by partly inhibiting EMT.

12.
J Neural Eng ; 20(1)2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36608339

RESUMEN

Objective. Motor imagery (MI) is a process of autonomously modulating the motor area to rehearse action mentally without actual execution. Based on the neuroplasticity of the cerebral cortex, MI can promote the functional rehabilitation of the injured cerebral cortex motor area. However, it usually takes several days to a few months to train individuals to acquire the necessary MI ability to control rehabilitation equipment in current studies, which greatly limits the clinical application of rehabilitation training systems based on the MI brain-computer interface (BCI).Approach. A novel MI training paradigm combined with the error related potential (ErrP) is proposed, and online adaptive training of the MI classifier was performed using ErrP. ErrP is used to correct the output of the MI classification to obtain a higher accuracy of kinesthetic feedback based on the imagination intention of subjects while generating simulated labels for MI online adaptive training. In this way, we improved the MI training efficiency. Thirteen subjects were randomly divided into an experimental group using the proposed paradigm and a control group using the traditional MI training paradigm to participate in six MI training experiments.Main results. The proposed paradigm enabled the experimental group to obtain a higher event-related desynchronization modulation level in the contralateral brain region compared with the control group and 69.76% online classification accuracy of MI after three MI training experiments. The online classification accuracy reached 72.76% and the whole system recognized the MI intention of the subjects with an online accuracy of 82.61% after six experiments.Significance. Compared with the conventional unimodal MI training strategy, the proposed approach enables subjects to use the MI-BCI based system directly and achieve a better performance after only three training experiments with training left and right hands simultaneously. This greatly improves the usability of the MI-BCI-based rehabilitation system and makes it more convenient for clinical use.


Asunto(s)
Interfaces Cerebro-Computador , Corteza Motora , Humanos , Electroencefalografía/métodos , Imágenes en Psicoterapia , Encéfalo , Imaginación
13.
J Oncol ; 2022: 4922409, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35865088

RESUMEN

Objective: Parotid gland (PG) is a radiosensitive organ, and xerostomia (XS) is a key factor affecting patients' life quality after conventional radiotherapy for head and neck tumors. In this study, dosimetry analysis was performed on PG stem cell preservation in intensity-modulated radiotherapy (IMRT) for nasopharyngeal carcinoma (NPC). Methods: All clinical data of 80 NPC patients diagnosed pathologically in the Radiotherapy Department of Taizhou Hospital of Zhejiang Province Affiliated with Wenzhou Medical University from August 2017 to September 2019 were retrospectively analyzed. Patients were assigned to a regular group and a restricted group according to different IMRT plans, in which a dose limitation for the parotid duct was added in the restricted group in addition to the conventional plan used in the regular group to minimize the parotid duct radiation dose. The differences in planning target volume (PTV) dose distribution, organ at risk (OAR) dose, and dose to the PG and its ducts were compared between the two groups. Results: Significantly higher mean irradiation doses of the brainstem, mandible, and oral cavity were determined in the restricted group compared with the regular group (P > 0.05), but there was no significant difference in the mean dose of other OARs irradiated (P > 0.05). As compared to the irradiation of bilateral PGs, no statistical differences were found in the mean irradiation dose and V30 between regular and restricted groups (P > 0.05), but lower V20 and higher V45 were determined in the restricted group (P < 0.05). The mean irradiation dose, V15, V20, and V26 of bilateral parotid ducts were lower in the restricted group as compared to the regular group (P < 0.05). Conclusion: IMRT for NPC can effectively reduce the mean irradiation dose and play a PG stem cell preservation role by giving specific dose limitation conditions to the parotid duct area without affecting PTV dose distribution and OAR irradiation dose, which has certain feasibility.

14.
Front Oncol ; 12: 1023040, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338716

RESUMEN

Acute myeloid leukemia (AML) is one of the most common hematopoietic malignancies and exhibits a high rate of relapse and unfavorable outcomes. Ferroptosis, a relatively recently described type of cell death, has been reported to be involved in cancer development. However, the prognostic value of ferroptosis-related genes (FRGs) in AML remains unclear. In this study, we found 54 differentially expressed ferroptosis-related genes (DEFRGs) between AML and normal marrow tissues. 18 of 54 DEFRGs were correlated with overall survival (OS) (P<0.05). Using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis, we selected 10 DEFRGs that were associated with OS to build a prognostic signature. Data from AML patients from the International Cancer Genome Consortium (ICGC) cohort as well as the First Affiliated Hospital of Wenzhou Medical University (FAHWMU) cohort were used for validation. Notably, the prognostic survival analyses of this signature passed with a significant margin, and the riskscore was identified as an independent prognostic marker using Cox regression analyses. Then we used a machine learning method (SHAP) to judge the importance of each feature in this 10-gene signature. Riskscore was shown to have the highest correlation with this 10-gene signature compared with each gene in this signature. Further studies showed that AML was significantly associated with immune cell infiltration. In addition, drug-sensitive analysis showed that 8 drugs may be beneficial for treatment of AML. Finally, the expressions of 10 genes in this signature were verified by real-time quantitative polymerase chain reaction. In conclusion, our study establishes a novel 10-gene prognostic risk signature based on ferroptosis-related genes for AML patients and FRGs may be novel therapeutic targets for AML.

15.
Oxid Med Cell Longev ; 2022: 4494713, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35069975

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. However, there is a lack of adequate means of treatment prognostication for HCC. Pyroptosis is a newly discovered way of programmed cell death. However, the prognostic role of pyroptosis in HCC has not been thoroughly investigated. Here, we generated a novel prognostic signature to evaluate the prognostic value of pyroptosis-related genes (PRGs) using the data from The Cancer Genome Atlas (TCGA) database. The accuracy of the signature was validated using survival analysis through the International Cancer Genome Consortium cohort (n = 231) and the First Affiliated Hospital of Wenzhou Medical University cohort (n = 180). Compared with other clinical factors, the risk score of the signature was found to be associated with better patient outcomes. The enrichment analysis identified multiple pathways related with pyroptosis in HCC. Furthermore, drug sensitivity testing identified six potential chemotherapeutic agents to provide possible treatment avenues. Interestingly, patients with low risk were confirmed to be associated with lower tumor mutation burden (TMB). However, patients at high risk were found to have a higher count of immune cells. Consensus clustering was performed to identify two main molecular subtypes (named clusters A and B) based on the signature. It was found that compared with cluster B, better survival outcomes and lower TMB were observed in cluster A. In conclusion, signature construction and molecular subtype identification of PRGs could be used to predict the prognosis of HCC, which may provide a specific reference for the development of novel biomarkers for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular/genética , Perfilación de la Expresión Génica/métodos , Neoplasias Hepáticas/genética , Piroptosis/genética , Anciano , Carcinoma Hepatocelular/mortalidad , Femenino , Humanos , Neoplasias Hepáticas/mortalidad , Masculino , Persona de Mediana Edad , Pronóstico , Análisis de Supervivencia
16.
Front Robot AI ; 8: 721317, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096978

RESUMEN

As mobile robots are increasingly introduced into our daily lives, it grows ever more imperative that these robots navigate with and among people in a safe and socially acceptable manner, particularly in shared spaces. While research on enabling socially-aware robot navigation has expanded over the years, there are no agreed-upon evaluation protocols or benchmarks to allow for the systematic development and evaluation of socially-aware navigation. As an effort to aid more productive development and progress comparisons, in this paper we review the evaluation methods, scenarios, datasets, and metrics commonly used in previous socially-aware navigation research, discuss the limitations of existing evaluation protocols, and highlight research opportunities for advancing socially-aware robot navigation.

17.
Bayesian Anal ; 16(3): 719-744, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35719315

RESUMEN

A central theme in the field of survey statistics is estimating population-level quantities through data coming from potentially non-representative samples of the population. Multilevel regression and poststratification (MRP), a model-based approach, is gaining traction against the traditional weighted approach for survey estimates. MRP estimates are susceptible to bias if there is an underlying structure that the methodology does not capture. This work aims to provide a new framework for specifying structured prior distributions that lead to bias reduction in MRP estimates. We use simulation studies to explore the benefit of these prior distributions and demonstrate their efficacy on non-representative US survey data. We show that structured prior distributions offer absolute bias reduction and variance reduction for posterior MRP estimates in a large variety of data regimes.

18.
Front Oncol ; 11: 700084, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249761

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is the most common renal cell carcinoma and has poor prognosis in the locally advanced stage. Ferroptosis, a relatively new type of cell death, has gained significant attention in recent years. This study aimed to explore the prognostic value of ferroptosis-related genes (FRGs) in ccRCC. In this study, 50 differentially expressed FRGs between ccRCC and adjacent normal kidney tissues were identified, 26 of them correlated with overall survival (OS) (P <0.05). Eight optimal FRGs were selected by Lasso regression and multivariate Cox regression analysis, and used to construct a new prognostic risk signature to predict the prognosis of ccRCC patients. In addition, the signature passed the validation of prognostic survival analyses by a significant margin, and the risk score was identified as an independent prognostic marker via Cox regression analyses. Further studies indicated that the signature was significantly correlated with immune cell infiltration. Moreover, the levels of eight FRGs were examined in ccRCC. Collectively, the 8-FRG prognostic risk signature helps the clinicians predict the prognosis and OS of the patients, and standardize prognostic assessments.

19.
Int J Gen Med ; 14: 9555-9565, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34916837

RESUMEN

AIM: This study was done to determine biomarkers for the prognostic prediction of hepatocellular carcinoma (HCC). MATERIALS AND METHODS: In the Gene Expression Omnibus, the gene expression profiles of HCC were downloaded. Biomarkers were identified by weighted gene co-expression network analysis and protein-protein interaction network analysis. RESULTS: There were 24 modules, which were characterized by the high correlation with HCC. Meanwhile, through enrichment analysis, differentially expressed genes were largely participated in the ubiquitination and autophagy processes. Moreover, PRC1, TOP2A and CKAP2L may be the hub genes involved in HCC tumorigenesis, and their biomarker roles were further demonstrated via Gene Expression Profiling Interactive Analysis (GEPIA) and Oncomine databases. In addition, the levels of PRC1, TOP2A and CKAP2L were obviously up-regulated in the sera of HCC patients. CONCLUSION: PRC1, TOP2A and CKAP2L may serve as biomarkers for the prognostic prediction of HCC patients.

20.
Nat Commun ; 11(1): 5613, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33154384

RESUMEN

The kagome lattice Co3Sn2S2 exhibits the quintessential topological phenomena of a magnetic Weyl semimetal such as the chiral anomaly and Fermi-arc surface states. Probing its magnetic properties is crucial for understanding this correlated topological state. Here, using spin-polarized scanning tunneling microscopy/spectroscopy (STM/S) and non-contact atomic force microscopy (nc-AFM) combined with first-principle calculations, we report the discovery of localized spin-orbit polarons (SOPs) with three-fold rotation symmetry nucleated around single S-vacancies in Co3Sn2S2. The SOPs carry a magnetic moment and a large diamagnetic orbital magnetization of a possible topological origin associated relating to the diamagnetic circulating current around the S-vacancy. Appreciable magneto-elastic coupling of the SOP is detected by nc-AFM and STM. Our findings suggest that the SOPs can enhance magnetism and more robust time-reversal-symmetry-breaking topological phenomena. Controlled engineering of the SOPs may pave the way toward practical applications in functional quantum devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA