Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Chemistry ; 30(40): e202400870, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38736169

RESUMEN

Alzheimer's disease (AD) is an age-related neurodegenerative disease with amyloid-ß (Aß) deposition as the main pathological feature. It's an important challenge to find new ways to clear Aß from the brain. The soluble amyloid precursor protein α (sAPPα) is a neuroprotective protein and can attenuate neuronal damage, including toxic Aß. However, the regulatory role of sAPPα in non-neuronal cells, such as microglia, is less reported and controversial. Here, we showed that sAPPα promoted the phagocytosis and degradation of Aß in both normal and damaged microglia. Moreover, the function of damaged microglia was improved by the sAPPα through normalizing mitochondrial function. Furthermore, the results of molecular docking simulation showed that sAPPα had a good affinity with Aß. We preliminarily reveal that sAPPα is similar to antibodies and can participate in the regulation of microglia phagocytosis and degradation of Aß after binding to Aß. sAPPα is expected to be a mild and safe peptide drug or drug carrier for AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide , Microglía , Mitocondrias , Simulación del Acoplamiento Molecular , Fagocitosis , Microglía/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/química , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Humanos , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Ratones , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química
2.
BMC Cancer ; 24(1): 71, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216883

RESUMEN

BACKGROUND: Ras gene mutation and/or overexpression are drivers in the progression of cancers, including colorectal cancer. Blocking the Ras signaling has become a significant strategy for cancer therapy. Previously, we constructed a recombinant scFv, RGD-p21Ras-scFv by linking RGD membrane-penetrating peptide gene with the anti-p21Ras scFv gene. Here, we expressed prokaryotically RGD-p21Ras-scFv on a pilot scale, then investigated the anti-tumor effect and the mechanism of blocking Ras signaling. METHODS: The E. coli bacteria which could highly express RGD-p21Ras-scFv was screened and grown in 100 L fermentation tank to produce RGD-p21Ras-scFv on optimized induced expression conditions. The scFv was purified from E. coli bacteria using His Ni-NTA column. ELISA was adopted to test the immunoreactivity of RGD-p21Ras-scFv against p21Ras proteins, and the IC50 of RGD-p21Ras-scFv was analyzed by CCK-8. Immunofluorescence colocalization and pull-down assays were used to determine the localization and binding between RGD-p21Ras-scFv and p21Ras. The interaction forces between RGD-p21Ras-scFv and p21Ras after binding were analyzed by molecular docking, and the stability after binding was determined by molecular dynamics simulations. p21Ras-GTP interaction was detected by Ras pull-down. Changes in the MEK-ERK /PI3K-AKT signaling paths downstream of Ras were detected by WB assays. The anti-tumor activity of RGD-p21Ras-scFv was investigated by nude mouse xenograft models. RESULTS: The technique of RGD-p21Ras-scFv expression on a pilot scale was established. The wet weight of the harvested bacteria was 31.064 g/L, and 31.6 mg RGD-p21Ras-scFv was obtained from 1 L of bacterial medium. The purity of the recombinant antibody was above 85%, we found that the prepared on a pilot scale RGD-p21Ras-scFv could penetrate the cell membrane of colon cancer cells and bind to p21Ras, then led to reduce of p21Ras-GTP (active p21Ras). The phosphorylation of downstream effectors MEK-ERK /PI3K-AKT was downregulated. In vivo antitumor activity assays showed that the RGD-p21Ras-scFv inhibited the proliferation of colorectal cancer cell lines. CONCLUSION: RGD-p21Ras-scFv prokaryotic expressed on pilot-scale could inhibited Ras-driven colorectal cancer growth by partially blocking p21Ras-GTP and might be able to be a hidden therapeutic antibody for treating RAS-driven tumors.


Asunto(s)
Neoplasias Colorrectales , Escherichia coli , Ratones , Animales , Humanos , Escherichia coli/genética , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Guanosina Trifosfato , Quinasas de Proteína Quinasa Activadas por Mitógenos , Proteínas Proto-Oncogénicas p21(ras)/genética
3.
Sensors (Basel) ; 24(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38931741

RESUMEN

Unconventional reservoirs, such as shale and tight formations, have become increasingly vital contributors to oil and gas production. In these reservoirs, fractures serve as crucial spaces for fluid migration and storage, making their precise assessment essential. Array acoustic logging stands out as a pivotal method for evaluating fractures. To investigate the impact of fracture width, fracture-filling conditions, and acoustic frequency on compressional and shear waves, a three-dimensional variable mesh finite difference program was employed for acoustic logging numerical simulation. Firstly, numerical models representing fractured formations with varying fracture widths and distinct fluid-filling conditions were established, and array acoustic logging numerical simulations were conducted at different frequencies. Subsequently, the waveform data were processed to extract acoustic characteristic parameters, such as velocities and amplitude attenuations of compressional and shear waves. Finally, a quantitative analysis was conducted to examine the variation patterns of characteristic parameters of refracted compressional and shear waves in relation to fracture properties. The research results indicate that amplitude attenuation information derived from borehole wave modes is particularly sensitive to the changes in fracture properties. As fracture width increased, we observed a significant amplitude attenuation in both compressional and shear waves, proportional to the logarithm of the attenuation coefficients. Furthermore, when the fracture width was constant, gas-filled fractures exhibited more prominent amplitude attenuation than water-filled fractures, with shear wave attenuation being more sensitive to the filling material. Moreover, from a quantitative perspective, the analysis revealed that the attenuation coefficients of refracted compressional and shear waves exhibited an exponential variation with gas saturation. Notably, once fracture width and filling conditions were established, the amplitudes of compressional and shear waves at the dominant frequency of 40 kHz were significantly reduced compared to those at 8 kHz, accompanied by increased attenuation. Subsequent quantitative analysis revealed that, when the product of fracture width and dominant frequency remains constant, the corresponding attenuation coefficient ratios approach 1. This indicates that the attenuation process of acoustic propagation in fractured media follows the principle of acoustic similarity. The findings of this study provide reference for further research on fracture property evaluation methods based on array acoustic logging data.

4.
Drug Dev Res ; 84(4): 654-670, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36959702

RESUMEN

Cancer has become a prominent disease that seriously endangers human health. The complexity of the biological characteristics of the tumor makes it challenging for traditional therapeutic drugs to penetrate tumor tissues and exert their antitumor effects. Internalizing RGD peptide (iRGD) is a novel tumor-homing peptide that binds to αvß3 and αvß5 integrins on the surface of tumor vessels through the C-end rule (CendR) motif. The CendR motif binds to the neuropilin-1 (NRP-1) receptor on tumor cells, initiating NRP-1-mediated transcytosis to facilitate drug entry into the tumor tissue. Multiple studies demonstrated that iRGD improved the penetration and targeting of antitumor drugs, thereby enhancing their antitumor efficacy. In this review, we initially described the origins of iRGD and its penetration mechanism. Furthermore, we presented updates on the application of iRGD in cancer chemotherapy, photodynamic therapy, gene therapy, immunotherapy, treatment with antibodies or protein-based biologics, and tumor imaging.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Línea Celular Tumoral , Péptidos , Antineoplásicos/uso terapéutico , Oligopéptidos/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
5.
J Neurosci ; 40(13): 2644-2662, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32066583

RESUMEN

Yes-associated protein (YAP) transcriptional coactivator is negatively regulated by the Hippo pathway and functions in controlling the size of multiple organs, such as liver during development. However, it is not clear whether YAP signaling participates in the process of the formation of glia scars after spinal cord injury (SCI). In this study, we found that YAP was upregulated and activated in astrocytes of C57BL/6 male mice after SCI in a Hippo pathway-dependent manner. Conditional knockout (KO) of yap in astrocytes significantly inhibited astrocytic proliferation, impaired the formation of glial scars, inhibited the axonal regeneration, and impaired the behavioral recovery of C57BL/6 male mice after SCI. Mechanistically, the bFGF was upregulated after SCI and induced the activation of YAP through RhoA pathways, thereby promoting the formation of glial scars. Additionally, YAP promoted bFGF-induced proliferation by negatively controlling nuclear distribution of p27Kip1 mediated by CRM1. Finally, bFGF or XMU-MP-1 (an inhibitor of Hippo kinase MST1/2 to activate YAP) injection indeed activated YAP signaling and promoted the formation of glial scars and the functional recovery of mice after SCI. These findings suggest that YAP promotes the formation of glial scars and neural regeneration of mice after SCI, and that the bFGF-RhoA-YAP-p27Kip1 pathway positively regulates astrocytic proliferation after SCI.SIGNIFICANCE STATEMENT Glial scars play critical roles in neuronal regeneration of CNS injury diseases, such as spinal cord injury (SCI). Here, we provide evidence for the function of Yes-associated protein (YAP) in the formation of glial scars after SCI through regulation of astrocyte proliferation. As a downstream of bFGF (which is upregulated after SCI), YAP promotes the proliferation of astrocytes through negatively controlling nuclear distribution of p27Kip1 mediated by CRM1. Activation of YAP by bFGF or XMU-MP-1 injection promotes the formation of glial scar and the functional recovery of mice after SCI. These results suggest that the bFGF-RhoA-YAP-p27Kip1 axis for the formation of glial scars may be a potential therapeutic strategy for SCI patients.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Astrocitos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Gliosis/metabolismo , Regeneración Nerviosa/fisiología , Traumatismos de la Médula Espinal/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Ciclo Celular/genética , Proliferación Celular/fisiología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Gliosis/genética , Gliosis/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Recuperación de la Función/fisiología , Transducción de Señal/fisiología , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/patología , Proteínas Señalizadoras YAP
6.
J Breast Cancer ; 26(3): 302-307, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37272249

RESUMEN

Neuroendocrine carcinoma of the breast is a rare malignant tumor which, with the features of Merkel cells is even rarer. Herein, we report a case of small cell carcinoma with Merkel cell features in a 52-year-old female. Microscopically, the tumor was characterized by diffuse and consistent small round cells that were de-adherent. The tumor cells had round or oval nuclei with delicate chromatin and small nucleoli, the cytoplasm was sparse and eosinophilic. Additionally, the tumor was accompanied by high-grade ductal carcinoma in situ. Immunohistochemical staining showed that infiltrating tumor cells were positive for neuroendocrine markers, and punctately positive for CK20. The patient underwent modified radical mastectomy, axillary lymph node dissection, and postoperative adjuvant chemotherapy. No recurrence or metastasis was observed during follow-up period. Primary breast small cell carcinoma with Merkel cell features is rare and easily misdiagnosed as Merkel cell carcinoma. Early diagnosis and treatment may improve patient prognosis.

8.
Dis Markers ; 2021: 6407528, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34987674

RESUMEN

Long noncoding RNAs (lncRNAs) have emerged as critical regulators of tumor progression, and lncRNA expression levels could serve as a potential molecular biomarker for the prognosis and diagnosis of some cancers. However, the prognostic value of lncRNAs in oral squamous cell carcinoma (OSCC) remains unclear. Thus, a meta-analysis was conducted to explore the potential prognostic value of lncRNAs in OSCC. We systematically searched PubMed, EBSCO, Web of Science, and Elsevier from 2005 to 2021 to identify all published studies that reported the association between lncRNAs and prognosis in OSCC. Then, we used meta-analytic methods to identify the actual effect size of lncRNAs on cancer prognosis. The hazard ratios (HRs) with 95% confidence intervals (95% CIs) were calculated to assess the strength of the association. The reliability of those results was then examined using measures of heterogeneity and testing for selective reporting biases. According to the inclusion and exclusion criteria, a total of 17 studies were eligible in our meta-analysis, involving 1384 Asian patients. The results identified a statistically significant association of high lncRNA expression with poor overall survival [adjusted pooled hazard ratio (AHR) = 1.52; 95% confidence interval (CI): [1.26-1.84], p ≤ 0.001]. The present meta-analysis demonstrated that lncRNA expression might be used as a predictive prognostic biomarker for Asian patients with OSCC.


Asunto(s)
Carcinoma de Células Escamosas/genética , Neoplasias de la Boca/genética , ARN Largo no Codificante/genética , Carcinoma de Células Escamosas/mortalidad , Humanos , Neoplasias de la Boca/mortalidad , Pronóstico , Tasa de Supervivencia
9.
Exp Ther Med ; 19(1): 696-702, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31885708

RESUMEN

Role of microRNA-429 (miRNA-429) in osteogenic differentiation of hADMSCs was elucidated to explore the potential mechanism. Serum level of miRNA-429 in osteoporosis patients and controls was determined by quantitative real-time polymerase chain reaction (qRT-PCR). After H2O2 induction in hADMSCs, cell viability and reactive oxygen species (ROS) level were determined by cell-counting kit (CCK-8) assay and flow cytometry, respectively. Alkaline phosphatase (ALP) activity in H2O2-induced hADMSCs was also detected. The binding condition between miRNA-429 and SCD-1 was verified by dual-luciferase reporter gene assay. Relative levels of osteogenesis-related genes influenced by SCD-1 and miRNA-429 were detected by qRT-PCR. Furthermore, regulatory effects of SCD-1 and miRNA-429 on ALP activity and calcification ability of hADMSCs were evaluated. miRNA-429 was significantly upregulated in serum of osteoporosis patients. During the process of osteogenesis differentiation, H2O2 induction gradually upregulated miRNA-429 in hADMSCs. Overexpression of miRNA-429 markedly reduced ALP activity. Subsequent dual-luciferase reporter gene assay verified that miRNA-429 could bind to SCD-1 and negatively regulated its protein level in hADMSCs. SCD-1 was obviously downregulated in the osteogenesis differentiation of hADMSCs under oxidative stress. Moreover, silencing of SCD-1 suppressed expression of osteogenesis-related gene, ALP activity and calcification ability. Notably, SCD-1 knockdown partially reversed the regulatory effect of miRNA-429 on the osteogenic differentiation of hADMSCs. miRNA-429 suppresses the osteogenic differentiation of hADMSCs under oxidative stress via downregulating SCD-1.

10.
Oncol Rep ; 41(1): 235-245, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30542722

RESUMEN

Tumor cells must resist anoikis to metastasize. There is a key role of angiogenesis in the growth and metastasis of tumors. However, the relationship between anoikis resistance and angiogenesis has not been well explored in human osteosarcoma. In the present study, we reported the higher expression of vascular endothelial growth factor­A (VEGF­A) in osteosarcoma cells that were resistant to anoikis than in parental osteosarcoma cells, promoting the proliferation, tube formation, and migration of human umbilical vein endothelial cells (HUVECs). Src, JNK (Jun amino­terminal kinase) and ERK (extracellular signal­regulated kinase) signaling pathway phosphorylation was activated in anoikis­resistant cells; Src inhibitor reduced the expression of VEGF­A and angiogenesis and inhibited JNK and ERK pathway activity. Overexpression of phosphorylated (p)­Src and VEGF­A was positively correlated to the metastatic potential in human osteosarcoma tissues, as quantified by immunohistochemistry. In addition, p­Src expression was directly correlated with VEGF­A expression and microvessel density in vivo. Our findings revealed that anoikis resistance in osteosarcoma cells increased the expression of VEGF­A and angiogenesis through the Src/JNK/ERK signaling pathways. Thus, Src may be a potential therapeutic alternative in osteosarcoma angiogenesis and metastasis.


Asunto(s)
Anoicis , Sistema de Señalización de MAP Quinasas , Neovascularización Patológica/patología , Osteosarcoma/patología , Familia-src Quinasas/metabolismo , Adolescente , Adulto , Animales , Línea Celular Tumoral , Niño , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Fosforilación , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven , Familia-src Quinasas/antagonistas & inhibidores
11.
Cancer Manag Res ; 11: 547-559, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30662285

RESUMEN

BACKGROUND: Notch signaling abnormalities are associated with the development of various tumors, including hematopoietic and epithelium-derived tumors. However, the role of Notch signaling in tumors originating from mesenchymal cells is unclear. The effect of Notch3 expression on the prognosis of osteosarcoma and its role and mechanism in osteosarcoma cells have never been reported. MATERIALS AND METHODS: In this study, we performed a clinicopathological analysis of 70 cases of osteosarcoma, with primary focus on survival. Osteosarcoma cell lines MTH and U2OS were used. After knockdown of Notch3 by lentiviral transfection and siRNA, the cell cycle, cell viability, and wound healing capacity were assessed. Subsequently, the Transwell assay was performed, and the expression levels of hairy and enhancer of split-1 (Hes1) and matrix metalloproteinase 7 (MMP7) were detected by RT-PCR and Western blot assay. The expression of MMP7 was also detected after knockdown of Hes1. Animal experiments were performed by injecting the cell lines MTH of Notch3 knockdown into mice tail veins and comparing the development of lung metastasis with the control group. RESULTS: Comparison of survival curves showed that Notch3 expression significantly impacts patient survival. Additionally, multivariate analysis revealed that Notch3 is an independent prognostic factor for osteosarcoma. In in vivo experiments, osteosarcoma-associated pulmonary metastasis in nude mice was reduced after Notch3 silencing. The expression of downstream effector molecule, Hes1, and that of the invasion and metastasis-associated proteolytic enzyme, MMP7, were reduced, and MMP7 was further decreased by Hes1 knockdown in in vitro experiments. CONCLUSION: Notch3 is a prognostic factor for osteosarcoma and might regulate its invasion and metastasis through the downstream target gene Hes1 and effector MMP7.

12.
J Exp Clin Cancer Res ; 37(1): 188, 2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-30092789

RESUMEN

BACKGROUND: Over the last two or three decades, the pace of development of treatments for osteosarcoma tends has been slow. Novel effective therapies for osteosarcoma are still lacking. Previously, we reported that tumor-suppressing STF cDNA 3 (TSSC3) functions as an imprinted tumor suppressor gene in osteosarcoma; however, the underlying mechanism by which TSSC3 suppresses the tumorigenesis and metastasis remain unclear. METHODS: We investigated the dynamic expression patterns of TSSC3 and autophagy-related proteins (autophagy related 5 (ATG5) and P62) in 33 human benign bone tumors and 58 osteosarcoma tissues using immunohistochemistry. We further investigated the correlations between TSSC3 and autophagy in osteosarcoma using western blotting and transmission electronic microscopy. CCK-8, Edu, and clone formation assays; wound healing and Transwell assays; PCR; immunohistochemistry; immunofluorescence; and western blotting were used to investigated the responses in TSSC3-overexpressing osteosarcoma cell lines, and in xenografts and metastasis in vivo models, with or without autophagy deficiency caused by chloroquine or ATG5 silencing. RESULTS: We found that ATG5 expression correlated positively with TSSC3 expression in human osteosarcoma tissues. We demonstrated that TSSC3 was an independent prognostic marker for overall survival in osteosarcoma, and positive ATG5 expression associated with positive TSSC3 expression suggested a favorable prognosis for patients. Then, we showed that TSSC3 overexpression enhanced autophagy via inactivating the Src-mediated PI3K/Akt/mTOR pathway in osteosarcoma. Further results suggested autophagy contributed to TSSC3-induced suppression of tumorigenesis and metastasis in osteosarcoma in vitro and in vivo models. CONCLUSIONS: Our findings highlighted, for the first time, the importance of autophagy as an underlying mechanism in TSSC3-induced antitumor effects in osteosarcoma. We also revealed that TSSC3-associated positive ATG5 expression might be a potential predictor of favorable prognosis in patients with osteosarcoma.


Asunto(s)
Neoplasias Óseas/metabolismo , Proteínas Nucleares/metabolismo , Osteosarcoma/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adulto , Autofagia/fisiología , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Carcinogénesis , Línea Celular Tumoral , Femenino , Humanos , Masculino , Metástasis de la Neoplasia , Proteínas Nucleares/genética , Osteosarcoma/genética , Osteosarcoma/patología , Pronóstico , Transducción de Señal , Adulto Joven , Familia-src Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA