Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Commun Signal ; 22(1): 127, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360674

RESUMEN

All-trans retinoic acid (ATRA) is the most relevant and functionally active metabolite of Vitamin-A. From a therapeutic standpoint, ATRA is the first example of pharmacological agent exerting its anti-tumor activity via a cell differentiating action. In the clinics, ATRA is used in the treatment of Acute Promyelocytic Leukemia, a rare form of myeloid leukemia with unprecedented therapeutic results. The extraordinary effectiveness of ATRA in the treatment of Acute Promyelocytic Leukemia patients has raised interest in evaluating the potential of this natural retinoid in the treatment of other types of neoplasias, with particular reference to solid tumors.The present article provides an overview of the available pre-clinical and clinical studies focussing on ATRA as a therapeutic agent in the context of breast cancer from a holistic point of view. In detail, we focus on the direct effects of ATRA in breast cancer cells as well as the underlying molecular mechanisms of action. In addition, we summarize the available information on the action exerted by ATRA on the breast cancer micro-environment, an emerging determinant of the progression and invasive behaviour of solid tumors. In particular we discuss the recent evidences of ATRA activity on the immune system. Finally, we analyse and discuss the results obtained with the few ATRA-based clinical trials conducted in the context of breast cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Leucemia Promielocítica Aguda , Humanos , Femenino , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patología , Neoplasias de la Mama/patología , Tretinoina/farmacología , Tretinoina/metabolismo , Línea Celular Tumoral , Diferenciación Celular , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Microambiente Tumoral
2.
Arch Biochem Biophys ; 715: 109099, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34856193

RESUMEN

Xenobiotic-metabolizing enzymes (XMEs) expressed in the olfactory epithelium (OE) are known to metabolize odorants. Aldehyde oxidase (AOX) recognizes a wide range of substrates among which are substrates with aldehyde groups. Some of these AOX substrates are odorants, such as benzaldehyde and n-octanal. One of the mouse AOX isoforms, namely AOX2 (mAOX2), was shown to be specifically expressed in mouse OE but its role to metabolize odorants in this tissue remains unexplored. In this study, we investigated the involvement of mouse AOX isoforms in the oxidative metabolism of aldehyde-odorants in the OE. Mouse OE extracts effectively metabolized aromatic and aliphatic aldehyde-odorants. Gene expression analysis revealed that not only mAOX2 but also the mAOX3 isoform is expressed in the OE. Furthermore, evaluation of inhibitory effects using the purified recombinant enzymes led us to identify specific inhibitors of each isoform, namely chlorpromazine, 17ß-estradiol, menadione, norharmane, and raloxifene. Using these specific inhibitors, we defined the contribution of mAOX2 and mAOX3 to the metabolism of aldehyde-odorants in the mouse OE. Taken together, these findings demonstrate that mAOX2 and mAOX3 are responsible for the oxidation of aromatic and aliphatic aldehyde-odorants in the mouse OE, implying their involvement in odor perception.


Asunto(s)
Aldehído Oxidasa/metabolismo , Aldehído Oxidorreductasas/metabolismo , Aldehídos/metabolismo , Odorantes , Mucosa Olfatoria/metabolismo , Aldehído Oxidasa/antagonistas & inhibidores , Aldehído Oxidorreductasas/antagonistas & inhibidores , Aldehídos/química , Animales , Inhibidores Enzimáticos/farmacología , Femenino , Masculino , Ratones Endogámicos C57BL , Mucosa Olfatoria/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Olfato/efectos de los fármacos
3.
J Biol Chem ; 295(16): 5377-5389, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32144208

RESUMEN

Aldehyde oxidases (AOXs) are a small group of enzymes belonging to the larger family of molybdo-flavoenzymes, along with the well-characterized xanthine oxidoreductase. The two major types of reactions that are catalyzed by AOXs are the hydroxylation of heterocycles and the oxidation of aldehydes to their corresponding carboxylic acids. Different animal species have different complements of AOX genes. The two extremes are represented in humans and rodents; whereas the human genome contains a single active gene (AOX1), those of rodents, such as mice, are endowed with four genes (Aox1-4), clustering on the same chromosome, each encoding a functionally distinct AOX enzyme. It still remains enigmatic why some species have numerous AOX enzymes, whereas others harbor only one functional enzyme. At present, little is known about the physiological relevance of AOX enzymes in humans and their additional forms in other mammals. These enzymes are expressed in the liver and play an important role in the metabolisms of drugs and other xenobiotics. In this review, we discuss the expression, tissue-specific roles, and substrate specificities of the different mammalian AOX enzymes and highlight insights into their physiological roles.


Asunto(s)
Aldehído Oxidasa/metabolismo , Evolución Molecular , Hígado/enzimología , Aldehído Oxidasa/química , Aldehído Oxidasa/genética , Animales , Humanos , Especificidad por Sustrato
4.
Int J Cancer ; 144(4): 755-766, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30259975

RESUMEN

Bromodomain and Extra-Terminal (BET) proteins are historically involved in regulating gene expression and BRD4 was recently found to be involved in DNA damage regulation. Aims of our study were to assess BRD4 regulation in homologous recombination-mediated DNA repair and to explore novel clinical strategies through the combinations of the pharmacological induction of epigenetic BRCAness in BRCA1 wild-type triple negative breast cancer (TNBC) cells by means of BET inhibitors and compounds already available in clinic. Performing a dual approach (chromatin immunoprecipitation and RNA interference), the direct relationship between BRD4 and BRCA1/RAD51 expression was confirmed in TNBC cells. Moreover, BRD4 pharmacological inhibition using two BET inhibitors (JQ1 and GSK525762A) induced a dose-dependent reduction in BRCA1 and RAD51 levels and is able to hinder homologous recombination-mediated DNA damage repair, generating a BRCAness phenotype in TNBC cells. Furthermore, BET inhibition impaired the ability of TNBC cells to overcome the increase in DNA damage after platinum salts (i.e., CDDP) exposure, leading to massive cell death, and triggered synthetic lethality when combined with PARP inhibitors (i.e., AZD2281). Altogether, the present study confirms that BET proteins directly regulate the homologous recombination pathway and their inhibition induced a BRCAness phenotype in BRCA1 wild-type TNBC cells. Noteworthy, being this strategy based on drugs already available for human use, it is rapidly transferable and could potentially enable clinicians to exploit platinum salts and PARP inhibitors-based treatments in a wider population of TNBC patients and not just in a specific subgroup, after validating clinical trials.


Asunto(s)
Proteína BRCA1/genética , Daño del ADN , Proteínas Nucleares/genética , Recombinasa Rad51/genética , Reparación del ADN por Recombinación/genética , Factores de Transcripción/genética , Antineoplásicos/farmacología , Azepinas/farmacología , Proteína BRCA1/metabolismo , Benzodiazepinas/farmacología , Proteínas de Ciclo Celular , Línea Celular Tumoral , Cisplatino/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Interferencia de ARN , Recombinasa Rad51/metabolismo , Reparación del ADN por Recombinación/efectos de los fármacos , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Triazoles/farmacología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
5.
Drug Metab Rev ; 51(4): 428-452, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31549868

RESUMEN

Human AOX1 is a member of the mammalian aldehyde oxidase (AOX) family of enzymes and it is an emerging cytosolic enzyme involved in phase I drug-metabolism, bio-transforming a number of therapeutic agents and xenobiotics. The current trend in drug-development is to design molecules which are not recognized and inactivated by CYP450 monooxygenases, the main drug-metabolizing system, to generate novel therapeutic agents characterized by optimal pharmacokinetic and pharmacodynamic properties. Unfortunately, this has resulted in a substantial enrichment in molecules which are recognized and metabolized by AOXs. The observation has raised interest in the generation of tools capable of predicting AOX-dependent drug-metabolism of novel molecules during the early phases of drug development. Such tools are likely to reduce the number of failures occurring at the clinical and late phase of the drug development process. The current review describes different in silico, in vitro and in vivo methods for the prediction of AOX metabolizing ability and focuses on the existing drawbacks and challenges associated with these approaches.


Asunto(s)
Aldehído Oxidasa/metabolismo , Preparaciones Farmacéuticas/metabolismo , Aldehído Oxidasa/antagonistas & inhibidores , Aldehído Oxidasa/química , Animales , Evaluación Preclínica de Medicamentos , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Especificidad de la Especie
6.
Drug Metab Dispos ; 45(8): 947-955, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28526768

RESUMEN

Aldehyde oxidases (AOXs) are molybdoflavoenzymes with an important role in the metabolism and detoxification of heterocyclic compounds and aliphatic as well as aromatic aldehydes. The enzymes use oxygen as the terminal electron acceptor and produce reduced oxygen species during turnover. Four different enzymes, mAOX1, mAOX3, mAOX4, and mAOX2, which are the products of distinct genes, are present in the mouse. A direct and simultaneous comparison of the enzymatic properties and characteristics of the four enzymes has never been performed. In this report, the four catalytically active mAOX enzymes were purified after heterologous expression in Escherichia coli The kinetic parameters of the four mouse AOX enzymes were determined and compared with the use of six predicted substrates of physiologic and toxicological interest, i.e., retinaldehyde, N1-methylnicotinamide, pyridoxal, vanillin, 4-(dimethylamino)cinnamaldehyde (p-DMAC), and salicylaldehyde. While retinaldehyde, vanillin, p-DMAC, and salycilaldehyde are efficient substrates for the four mouse AOX enzymes, N1-methylnicotinamide is not a substrate of mAOX1 or mAOX4, and pyridoxal is not metabolized by any of the purified enzymes. Overall, mAOX1, mAOX2, mAOX3, and mAOX4 are characterized by significantly different KM and kcat values for the active substrates. The four mouse AOXs are also characterized by quantitative differences in their ability to produce superoxide radicals. With respect to this last point, mAOX2 is the enzyme generating the largest rate of superoxide radicals of around 40% in relation to moles of substrate converted, and mAOX1, the homolog to the human enzyme, produces a rate of approximately 30% of superoxide radicals with the same substrate.


Asunto(s)
Aldehído Oxidasa/metabolismo , Superóxidos/metabolismo , Aldehídos/metabolismo , Animales , Benzaldehídos/metabolismo , Catálisis , Dominio Catalítico/fisiología , Cinamatos/metabolismo , Cinética , Ratones , Ratones Endogámicos C57BL , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Especificidad por Sustrato/fisiología
7.
J Biol Chem ; 290(29): 17690-17709, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26018078

RESUMEN

All-trans-retinoic acid (ATRA) is a natural compound proposed for the treatment/chemoprevention of breast cancer. Increasing evidence indicates that aberrant regulation of epithelial-to-mesenchymal transition (EMT) is a determinant of the cancer cell invasive and metastatic behavior. The effects of ATRA on EMT are largely unknown. In HER2-positive SKBR3 and UACC812 cells, showing co-amplification of the ERBB2 and RARA genes, ATRA activates a RARα-dependent epithelial differentiation program. In SKBR3 cells, this causes the formation/reorganization of adherens and tight junctions. Epithelial differentiation and augmented cell-cell contacts underlie the anti-migratory action exerted by the retinoid in cells exposed to the EMT-inducing factors EGF and heregulin-ß1. Down-regulation of NOTCH1, an emerging EMT modulator, is involved in the inhibition of motility by ATRA. Indeed, the retinoid blocks NOTCH1 up-regulation by EGF and/or heregulin-ß1. Pharmacological inhibition of γ-secretase and NOTCH1 processing also abrogates SKBR3 cell migration. Stimulation of TGFß contributes to the anti-migratory effect of ATRA. The retinoid switches TGFß from an EMT-inducing and pro-migratory determinant to an anti-migratory mediator. Inhibition of the NOTCH1 pathway not only plays a role in the anti-migratory action of ATRA; it is relevant also for the anti-proliferative activity of the retinoid in HCC1599 breast cancer cells, which are addicted to NOTCH1 for growth/viability. This effect is enhanced by the combination of ATRA and the γ-secretase inhibitor N-(N-(3,5-difluorophenacetyl)-l-alanyl)-S-phenylglycine t-butyl ester, supporting the concept that the two compounds act at the transcriptional and post-translational levels along the NOTCH1 pathway.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Receptor Notch1/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Tretinoina/farmacología , Mama/efectos de los fármacos , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Humanos , Receptores de Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico , Transducción de Señal/efectos de los fármacos , Factores de Transcripción de la Familia Snail , Factores de Transcripción/metabolismo
8.
Arch Toxicol ; 90(4): 753-80, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26920149

RESUMEN

Mammalian aldehyde oxidases (AOXs; EC1.2.3.1) are a group of conserved proteins belonging to the family of molybdo-flavoenzymes along with the structurally related xanthine dehydrogenase enzyme. AOXs are characterized by broad substrate specificity, oxidizing not only aromatic and aliphatic aldehydes into the corresponding carboxylic acids, but also hydroxylating a series of heteroaromatic rings. The number of AOX isoenzymes expressed in different vertebrate species is variable. The two extremes are represented by humans, which express a single enzyme (AOX1) in many organs and mice or rats which are characterized by tissue-specific expression of four isoforms (AOX1, AOX2, AOX3, and AOX4). In vertebrates each AOX isoenzyme is the product of a distinct gene consisting of 35 highly conserved exons. The extant species-specific complement of AOX isoenzymes is the result of a complex evolutionary process consisting of a first phase characterized by a series of asynchronous gene duplications and a second phase where the pseudogenization and gene deletion events prevail. In the last few years remarkable advances in the elucidation of the structural characteristics and the catalytic mechanisms of mammalian AOXs have been made thanks to the successful crystallization of human AOX1 and mouse AOX3. Much less is known about the physiological function and physiological substrates of human AOX1 and other mammalian AOX isoenzymes, although the importance of these proteins in xenobiotic metabolism is fairly well established and their relevance in drug development is increasing. This review article provides an overview and a discussion of the current knowledge on mammalian AOX.


Asunto(s)
Aldehído Oxidasa/química , Aldehído Oxidasa/metabolismo , Evolución Molecular , Aldehído Oxidasa/genética , Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Animales , Catálisis , Cristalografía por Rayos X , Escherichia coli/genética , Humanos , Inactivación Metabólica , Mamíferos , Polimorfismo de Nucleótido Simple , Xenobióticos/metabolismo , Xenobióticos/farmacocinética
9.
J Biol Inorg Chem ; 20(2): 209-17, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25287365

RESUMEN

In this work, a combination of homology modeling and molecular dynamics (MD) simulations was used to investigate the factors that modulate substrate specificity and activity of the mouse AOX isoforms: mAOX1, mAOX2 (previously mAOX3l1), mAOX3 and mAOX4. The results indicate that the AOX isoform structures are highly preserved and even more conserved than the corresponding amino acid sequences. The only differences are at the protein surface and substrate-binding site region. The substrate-binding site of all isoforms consists of two regions: the active site, which is highly conserved among all isoforms, and a isoform-specific region located above. We predict that mAOX1 accepts a broader range of substrates of different shape, size and nature relative to the other isoforms. In contrast, mAOX4 appears to accept a more restricted range of substrates. Its narrow and hydrophobic binding site indicates that it only accepts small hydrophobic substrates. Although mAOX2 and mAOX3 are very similar to each other, we propose the following pairs of overlapping substrate specificities: mAOX2/mAOX4 and mAOX3/mAXO1. Based on these considerations, we propose that the catalytic activity between all isoforms should be similar but the differences observed in the binding site might influence the substrate specificity of each enzyme. These results also suggest that the presence of several AOX isoforms in mouse allows them to oxidize more efficiently a wider range of substrates. This contrasts with the same or other organisms that only express one isoform and are less efficient or incapable of oxidizing the same type of substrates.


Asunto(s)
Aldehído Oxidasa/química , Aldehído Oxidorreductasas/química , Flavoproteínas/química , Conformación Proteica , Aldehído Oxidasa/metabolismo , Aldehído Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Dominio Catalítico , Cinética , Ratones , Simulación de Dinámica Molecular , Oxidación-Reducción , Especificidad por Sustrato
10.
J Exp Biol ; 217(Pt 12): 2201-11, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24737760

RESUMEN

In the genome of Drosophila melanogaster, four genes coding for aldehyde oxidases (AOX1-4) were identified on chromosome 3. Phylogenetic analysis showed that the AOX gene cluster evolved via independent duplication events in the vertebrate and invertebrate lineages. The functional role and the substrate specificity of the distinct Drosophila AOX enzymes is unknown. Two loss-of-function mutant alleles in this gene region, low pyridoxal oxidase (Po(lpo)) and aldehyde oxidase-1 (Aldox-1(n1)) are associated with a phenotype characterized by undetectable AOX enzymatic activity. However, the genes involved and the corresponding mutations have not yet been identified. In this study we characterized the activities, substrate specificities and expression profiles of the four AOX enzymes in D. melanogaster. We show that the Po(lpo)-associated phenotype is the consequence of a structural alteration of the AOX1 gene. We identified an 11-bp deletion in the Po(lpo) allele, resulting in a frame-shift event, which removes the molybdenum cofactor domain of the encoded enzyme. Furthermore, we show that AOX2 activity is detectable only during metamorphosis and characterize a Minos-AOX2 insertion in this developmental gene that disrupts its activity. We demonstrate that the Aldox-1(n1) phenotype maps to the AOX3 gene and AOX4 activity is not detectable in our assays.


Asunto(s)
Aldehído Oxidasa/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Regulación Enzimológica de la Expresión Génica , Proteínas de Insectos/genética , Aldehído Oxidasa/química , Aldehído Oxidasa/metabolismo , Alelos , Animales , Drosophila melanogaster/química , Evolución Molecular , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Especificidad por Sustrato
11.
Cell Mol Life Sci ; 70(10): 1807-30, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23263164

RESUMEN

Aldehyde oxidases (AOXs) and xanthine dehydrogenases (XDHs) belong to the family of molybdo-flavoenzymes. Although AOXs are not identifiable in fungi, these enzymes are represented in certain protists and the majority of plants and vertebrates. The physiological functions and substrates of AOXs are unknown. Nevertheless, AOXs are major drug metabolizing enzymes, oxidizing a wide range of aromatic aldehydes and heterocyclic compounds of medical/toxicological importance. Using genome sequencing data, we predict the structures of AOX genes and pseudogenes, reconstructing their evolution. Fishes are the most primitive organisms with an AOX gene (AOXα), originating from the duplication of an ancestral XDH. Further evolution of fishes resulted in the duplication of AOXα into AOXß and successive pseudogenization of AOXα. AOXß is maintained in amphibians and it is the likely precursors of reptilian, avian, and mammalian AOX1. Amphibian AOXγ is a duplication of AOXß and the likely ancestor of reptilian and avian AOX2, which, in turn, gave rise to mammalian AOX3L1. Subsequent gene duplications generated the two mammalian genes, AOX3 and AOX4. The evolution of mammalian AOX genes is dominated by pseudogenization and deletion events. Our analysis is relevant from a structural point of view, as it provides information on the residues characterizing the three domains of each mammalian AOX isoenzyme. We cloned the cDNAs encoding the AOX proteins of guinea pig and cynomolgus monkeys, two unique species as to the evolution of this enzyme family. We identify chimeric RNAs from the human AOX3 and AOX3L1 pseudogenes with potential to encode a novel microRNA.


Asunto(s)
Aldehído Oxidasa/metabolismo , Evolución Molecular , Aldehído Oxidasa/clasificación , Aldehído Oxidasa/genética , Secuencia de Aminoácidos , Animales , Duplicación de Gen , Regulación de la Expresión Génica , Genoma , Humanos , Invertebrados/genética , Invertebrados/metabolismo , MicroARNs/química , MicroARNs/metabolismo , Datos de Secuencia Molecular , Filogenia , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Seudogenes/genética , Alineación de Secuencia , Vertebrados/genética , Vertebrados/metabolismo , Xantina Deshidrogenasa/clasificación , Xantina Deshidrogenasa/genética , Xantina Deshidrogenasa/metabolismo
12.
J Biol Chem ; 287(48): 40690-702, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23019336

RESUMEN

BACKGROUND: Aldehyde oxidases have pharmacological relevance, and AOX3 is the major drug-metabolizing enzyme in rodents. RESULTS: The crystal structure of mouse AOX3 with kinetics and molecular docking studies provides insights into its enzymatic characteristics. CONCLUSION: Differences in substrate and inhibitor specificities can be rationalized by comparing the AOX3 and xanthine oxidase structures. SIGNIFICANCE: The first aldehyde oxidase structure represents a major advance for drug design and mechanistic studies. Aldehyde oxidases (AOXs) are homodimeric proteins belonging to the xanthine oxidase family of molybdenum-containing enzymes. Each 150-kDa monomer contains a FAD redox cofactor, two spectroscopically distinct [2Fe-2S] clusters, and a molybdenum cofactor located within the protein active site. AOXs are characterized by broad range substrate specificity, oxidizing different aldehydes and aromatic N-heterocycles. Despite increasing recognition of its role in the metabolism of drugs and xenobiotics, the physiological function of the protein is still largely unknown. We have crystallized and solved the crystal structure of mouse liver aldehyde oxidase 3 to 2.9 Å. This is the first mammalian AOX whose structure has been solved. The structure provides important insights into the protein active center and further evidence on the catalytic differences characterizing AOX and xanthine oxidoreductase. The mouse liver aldehyde oxidase 3 three-dimensional structure combined with kinetic, mutagenesis data, molecular docking, and molecular dynamics studies make a decisive contribution to understand the molecular basis of its rather broad substrate specificity.


Asunto(s)
Aldehído Oxidorreductasas/química , Aldehído Oxidasa/química , Aldehído Oxidasa/genética , Aldehído Oxidasa/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Bovinos , Cristalografía por Rayos X , Dimerización , Humanos , Cinética , Mamíferos/genética , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Especificidad por Sustrato
13.
J Biol Chem ; 287(31): 25782-94, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22669976

RESUMEN

Spinal muscular atrophy is a fatal genetic disease of motoneurons due to loss of full-length survival of motor neuron protein, the main product of the disease gene SMN1. Axonal SMN (a-SMN) is an alternatively spliced isoform of SMN1, generated by retention of intron 3. To study a-SMN function, we generated cellular clones for the expression of the protein in mouse motoneuron-like NSC34 cells. The model was instrumental in providing evidence that a-SMN decreases cell growth and plays an important role in the processes of axon growth and cellular motility. In our conditions, low levels of a-SMN expression were sufficient to trigger the observed biological effects, which were not modified by further increasing the amounts of the expressed protein. Differential transcriptome analysis led to the identification of novel a-SMN-regulated factors, i.e. the transcripts coding for the two chemokines, C-C motif ligands 2 and 7 (CCL2 and CCL7), as well as the neuronal and myotrophic factor, insulin-like growth factor-1 (IGF1). a-SMN-dependent induction of CCL2 and IGF1 mRNAs resulted in increased intracellular levels and secretion of the respective protein products. Induction of CCL2 contributes to the a-SMN effects, mediating part of the action on axon growth and random cell motility, as indicated by chemokine knockdown and re-addition studies. Our results shed new light on a-SMN function and the underlying molecular mechanisms. The data provide a rational framework to understand the role of a-SMN deficiency in the etiopathogenesis of spinal muscular atrophy.


Asunto(s)
Axones/fisiología , Movimiento Celular , Quimiocina CCL2/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Neuronas/fisiología , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Axones/metabolismo , Línea Celular , Proliferación Celular , Forma de la Célula , Quimiocina CCL2/genética , Quimiocina CCL7/genética , Quimiocina CCL7/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Neuronas/metabolismo , Transporte de Proteínas , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/fisiología , Transcripción Genética , Transcriptoma
14.
J Exp Clin Cancer Res ; 42(1): 298, 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951921

RESUMEN

BACKGROUND: Gastric-cancer is a heterogeneous type of neoplastic disease and it lacks appropriate therapeutic options. There is an urgent need for the development of innovative pharmacological strategies, particularly in consideration of the potential stratified/personalized treatment of this tumor. All-Trans Retinoic-acid (ATRA) is one of the active metabolites of vitamin-A. This natural compound is the first example of clinically approved cyto-differentiating agent, being used in the treatment of acute promyelocytic leukemia. ATRA may have significant therapeutic potential also in the context of solid tumors, including gastric-cancer. The present study provides pre-clinical evidence supporting the use of ATRA in the treatment of gastric-cancer using high-throughput approaches. METHODS: We evaluated the anti-proliferative action of ATRA in 27 gastric-cancer cell-lines and tissue-slice cultures from 13 gastric-cancer patients. We performed RNA-sequencing studies in 13 cell-lines exposed to ATRA. We used these and the gastric-cancer RNA-sequencing data of the TCGA/CCLE datasets to conduct multiple computational analyses. RESULTS: Profiling of our large panel of gastric-cancer cell-lines for their quantitative response to the anti-proliferative effects of ATRA indicate that approximately half of the cell-lines are characterized by sensitivity to the retinoid. The constitutive transcriptomic profiles of these cell-lines permitted the construction of a model consisting of 42 genes, whose expression correlates with ATRA-sensitivity.  The model predicts that 45% of the TCGA gastric-cancers are sensitive to ATRA. RNA-sequencing studies performed in retinoid-treated gastric-cancer cell-lines provide insights into the gene-networks underlying ATRA anti-tumor activity. In addition, our data demonstrate that ATRA exerts significant immune-modulatory effects, which seem to be largely controlled by IRF1 up-regulation. Finally, we provide evidence of a feed-back loop between IRF1 and DHRS3, another gene which is up-regulated by ATRA. CONCLUSIONS: ATRA is endowed with significant therapeutic potential in the stratified/personalized treatment gastric-cancer. Our data represent the fundaments for the design of clinical trials focusing on the use of ATRA in the personalized treatment of this heterogeneous tumor. Our gene-expression model will permit the development of a predictive tool for the selection of ATRA-sensitive gastric-cancer patients. The immune-regulatory responses activated by ATRA suggest that the retinoid and immune-checkpoint inhibitors constitute rational combinations for the management of gastric-cancer.


Asunto(s)
Antineoplásicos , Neoplasias Gástricas , Humanos , Tretinoina/farmacología , Tretinoina/uso terapéutico , Retinoides , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Transcriptoma , ARN , Antineoplásicos/farmacología
15.
J Biol Chem ; 286(5): 4027-42, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21131358

RESUMEN

Retinoids are promising agents for the treatment/prevention of breast carcinoma. We examined the role of microRNAs in mediating the effects of all-trans-retinoic acid (ATRA), which suppresses the proliferation of estrogen receptor-positive (ERα(+)) breast carcinoma cells, such as MCF-7, but not estrogen receptor-negative cells, such as MDA-MB-231. We found that pro-oncogenic miR-21 is selectively induced by ATRA in ERα(+) cells. Induction of miR-21 counteracts the anti-proliferative action of ATRA but has the potentially beneficial effect of reducing cell motility. In ERα(+) cells, retinoid-dependent induction of miR-21 is due to increased transcription of the MIR21 gene via ligand-dependent activation of the nuclear retinoid receptor, RARα. RARα is part of the transcription complex present in the 5'-flanking region of the MIR21 gene. The receptor binds to two functional retinoic acid-responsive elements mapping upstream of the transcription initiation site. Silencing of miR-21 enhances ATRA-dependent growth inhibition and senescence while reverting suppression of cell motility afforded by the retinoid. Up-regulation of miR-21 results in retinoid-dependent inhibition of the established target, maspin. Knockdown and overexpression of maspin in MCF-7 cells indicates that the protein is involved in ATRA-induced growth inhibition and contributes to the ATRA-dependent anti-motility responses. Integration between whole genome analysis of genes differentially regulated by ATRA in MCF-7 and MDA-MB-231 cells, prediction of miR-21 regulated genes, and functional studies led to the identification of three novel direct miR-21 targets: the pro-inflammatory cytokine IL1B, the adhesion molecule ICAM-1 and PLAT, the tissue-type plasminogen activator. Evidence for ICAM-1 involvement in retinoid-dependent inhibition of MCF-7 cell motility is provided.


Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , MicroARNs/genética , Tretinoina/farmacología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Molécula 1 de Adhesión Intercelular/genética , Interleucina-1/genética , Receptores de Estrógenos , Activador de Tejido Plasminógeno/genética , Activación Transcripcional/efectos de los fármacos
16.
Breast Cancer Res ; 14(5): 111, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22992337

RESUMEN

All-trans retinoic acid and derivatives (retinoids) are promising agents in the management of certain hematologic malignancies and solid tumors, including breast cancer. Retinoids are endowed with anti-proliferative, cyto-differentiating and apoptotic effects that are largely mediated by activation of the nuclear hormone retinoic acid receptors RARα, RARß and RARγ. These are ligand-dependent transcriptional factors controlling the expression of numerous genes. The relative importance of each receptor subtype for the anti-tumor activity of retinoids is largely unknown. Clarification of this point is of fundamental importance for the rational design of retinoid-based therapeutic approaches aimed at controlling a heterogeneous type of tumors, like breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Retinoides/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Humanos , Retinoides/uso terapéutico
17.
J Neurochem ; 121(3): 465-74, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22324632

RESUMEN

The axonal survival of motor neuron (a-SMN) protein is a truncated isoform of SMN1, the spinal muscular atrophy (SMA) disease gene. a-SMN is selectively localized in axons and endowed with remarkable axonogenic properties. At present, the role of a-SMN in SMA is unknown. As a first step to verify a link between a-SMN and SMA, we investigated by means of over-expression experiments in neuroblastoma-spinal cord hybrid cell line (NSC34) whether SMA pathogenic mutations located in the N-terminal part of the protein affected a-SMN function. We demonstrated here that either SMN1 missense mutations or small intragenic re-arrangements located in the Tudor domain consistently altered the a-SMN capability of inducing axonal elongation in vitro. Mutated human a-SMN proteins determined in almost all NSC34 motor neurons the growth of short axons with prominent morphologic abnormalities. Our data indicate that the Tudor domain is critical in dictating a-SMN function possibly because it is an association domain for proteins involved in axon growth. They also indicate that Tudor domain mutations are functionally relevant not only for FL-SMN but also for a-SMN, raising the possibility that also a-SMN loss of function may contribute to the pathogenic steps leading to SMA.


Asunto(s)
Axones/fisiología , Neuronas Motoras/fisiología , Atrofia Muscular Espinal/genética , Mutación/fisiología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Secuencia de Aminoácidos , Axones/ultraestructura , Western Blotting , Tamaño de la Célula , Supervivencia Celular , Células Cultivadas , Citoesqueleto/patología , Citoesqueleto/ultraestructura , Técnica del Anticuerpo Fluorescente , Células Híbridas , Microscopía Confocal , Datos de Secuencia Molecular , Neuronas Motoras/ultraestructura , Atrofia Muscular Espinal/patología , Mutación/genética , Mutación Missense/genética , Plásmidos/genética , Fracciones Subcelulares/patología , Fracciones Subcelulares/ultraestructura , Transfección
18.
Drug Metab Dispos ; 40(5): 856-64, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22279051

RESUMEN

Aldehyde oxidase (AO) is a complex molybdo-flavoprotein that belongs to the xanthine oxidase family. AO is active as a homodimer, and each 150-kDa monomer binds two distinct [2Fe2S] clusters, FAD, and the molybdenum cofactor. AO has an important role in the metabolism of drugs based on its broad substrate specificity oxidizing aromatic aza-heterocycles, for example, N(1)-methylnicotinamide and N-methylphthalazinium, or aldehydes, such as benzaldehyde, retinal, and vanillin. Sequencing the 35 coding exons of the human AOX1 gene in a sample of 180 Italian individuals led to the identification of relatively frequent, synonymous, missense and nonsense single-nucleotide polymorphisms (SNPs). Human aldehyde oxidase (hAOX1) was purified after heterologous expression in Escherichia coli. The recombinant protein was obtained with a purity of 95% and a yield of 50 µg/l E. coli culture. Site-directed mutagenesis of the hAOX1 cDNA allowed the purification of protein variants bearing the amino acid changes R802C, R921H, N1135S, and H1297R, which correspond to some of the identified SNPs. The hAOX1 variants were purified and compared with the wild-type protein relative to activity, oligomerization state, and metal content. Our data show that the mutation of each amino acid residue has a variable impact on the ability of hAOX1 to metabolize selected substrates. Thus, the human population is characterized by the presence of functionally inactive hAOX1 allelic variants as well as variants encoding enzymes with different catalytic activities. Our results indicate that the presence of these allelic variants should be considered for the design of future drugs.


Asunto(s)
Aldehído Oxidasa/genética , Aldehído Oxidasa/metabolismo , Polimorfismo de Nucleótido Simple , Sustitución de Aminoácidos , Cromatografía en Gel , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Femenino , Frecuencia de los Genes , Heterocigoto , Homocigoto , Humanos , Italia , Masculino , Modelos Moleculares , Mutación Missense , Preparaciones Farmacéuticas/metabolismo , Multimerización de Proteína , Especificidad por Sustrato
19.
Stem Cell Res Ther ; 13(1): 440, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056433

RESUMEN

BACKGROUND: Cornelia de Lange syndrome (CdLS) is a rare multisystem genetic disorder which is caused by genetic defects involving the Nipped-B-like protein (NIPBL) gene in the majority of clinical cases (60-70%). Currently, there are no specific cures available for CdLS and clinical management is needed for life. Disease models are highly needed to find a cure. Among therapeutic possibilities are genome editing strategies based on CRISPR-Cas technology. METHODS: A comparative analysis was performed to test the most recent CRISPR-Cas technologies comprising base- and prime-editors which introduce modifications without DNA cleavages and compared with sequence substitution approaches through homology directed repair (HDR) induced by Cas9 nuclease activity. The HDR method that was found more efficient was applied to repair a CdLS-causing mutation in the NIPBL gene. Human-induced pluripotent stem cells (hiPSCs) derived from a CdLS patient carrying the c.5483G > A mutation in the NIPBL were modified through HDR to generate isogenic corrected clones. RESULTS: This study reports an efficient method to repair the NIPBL gene through HDR mediated by CRISPR-Cas and induced with a compound (NU7441) inhibiting non-homologous end joining (NHEJ) repair. This sequence repair method allowed the generation of isogenic wild-type hiPSCs clones with regular karyotype and preserved pluripotency. CONCLUSIONS: CdLS cellular models were generated which will facilitate the investigation of the disease molecular determinants and the identification of therapeutic targets. In particular, the hiPSC-based cellular models offer the paramount advantage to study the tissue differentiation stages which are altered in the CdLS clinical development. Importantly, the hiPSCs that were generated are isogenic thus providing the most controlled experimental set up between wild-type and mutated conditions.


Asunto(s)
Síndrome de Cornelia de Lange , Células Madre Pluripotentes Inducidas , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/genética , Células Clonales/metabolismo , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/terapia , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación/genética , Fenotipo , Tecnología
20.
Cell Death Dis ; 13(1): 30, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013142

RESUMEN

The role played by lipids in the process of granulocytic differentiation activated by all-trans retinoic acid (ATRA) in Acute-Promyelocytic-Leukemia (APL) blasts is unknown. The process of granulocytic differentiation activated by ATRA in APL blasts is recapitulated in the NB4 cell-line, which is characterized by expression of the pathogenic PML-RARα fusion protein. In the present study, we used the NB4 model to define the effects exerted by ATRA on lipid homeostasis. Using a high-throughput lipidomic approach, we demonstrate that exposure of the APL-derived NB4 cell-line to ATRA causes an early reduction in the amounts of cardiolipins, a major lipid component of the mitochondrial membranes. The decrease in the levels of cardiolipins results in a concomitant inhibition of mitochondrial activity. These ATRA-dependent effects are causally involved in the granulocytic maturation process. In fact, the ATRA-induced decrease of cardiolipins and the concomitant dysfunction of mitochondria precede the differentiation of retinoid-sensitive NB4 cells and the two phenomena are not observed in the retinoid-resistant NB4.306 counterparts. In addition, ethanolamine induced rescue of the mitochondrial dysfunction activated by cardiolipin deficiency inhibits ATRA-dependent granulocytic differentiation and induction of the associated autophagic process. The RNA-seq studies performed in parental NB4 cells and a NB4-derived cell population, characterized by silencing of the autophagy mediator, ATG5, provide insights into the mechanisms underlying the differentiating action of ATRA. The results indicate that ATRA causes a significant down-regulation of CRLS1 (Cardiolipin-synthase-1) and LPCAT1 (Lysophosphatidylcholine-Acyltransferase-1) mRNAs which code for two enzymes catalyzing the last steps of cardiolipin synthesis. ATRA-dependent down-regulation of CRLS1 and LPCAT1 mRNAs is functionally relevant, as it is accompanied by a significant decrease in the amounts of the corresponding proteins. Furthermore, the decrease in CRLS1 and LPCAT1 levels requires activation of the autophagic process, as down-regulation of the two proteins is blocked in ATG5-silenced NB4-shATG5 cells.


Asunto(s)
Autofagia/fisiología , Cardiolipinas/metabolismo , Diferenciación Celular/efectos de los fármacos , Leucemia Promielocítica Aguda/patología , Mitocondrias/metabolismo , Tretinoina/farmacología , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Autofagia/efectos de los fármacos , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , Etanolamina/farmacología , Humanos , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Lipidómica , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/efectos de los fármacos , Proteínas de Fusión Oncogénica/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA