Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Plant Physiol ; 165(1): 196-206, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24664206

RESUMEN

Kalanchoë daigremontiana reproduces asexually by generating numerous plantlets on its leaf margins. The formation of plantlets requires the somatic initiation of organogenic and embryogenic developmental programs in the leaves. However, unlike normal embryogenesis in seeds, leaf somatic embryogenesis bypasses seed dormancy to form viable plantlets. In Arabidopsis (Arabidopsis thaliana), seed dormancy and embryogenesis are initiated by the transcription factor LEAFY COTYLEDON1 (LEC1). The K. daigremontiana ortholog of LEC1 is expressed during leaf somatic embryo development. However, KdLEC1 encodes for a LEC1-type protein that has a unique B domain, with 11 unique amino acids and a premature stop codon. Moreover, the truncated KdLEC1 protein is not functional in Arabidopsis. Here, we show that K. daigremontiana transgenic plants expressing a functional, chimeric KdLEC1 gene under the control of Arabidopsis LEC1 promoter caused several developmental defects to leaf somatic embryos, including seed dormancy characteristics. The dormant plantlets also behaved as typical dormant seeds. Transgenic plantlets accumulated oil bodies and responded to the abscisic acid biosynthesis inhibitor fluridone, which broke somatic-embryo dormancy and promoted their normal development. Our results indicate that having a mutated form of LEC1 gene in K. daigremontiana is essential to bypass dormancy in the leaf embryos and generate viable plantlets, suggesting that the loss of a functional LEC1 promotes viviparous leaf somatic embryos and thus enhances vegetative propagation in K. daigremontiana. Mutations resulting in truncated LEC1 proteins may have been of a selective advantage in creating somatic propagules, because such mutations occurred independently in several Kalanchoë species, which form plantlets constitutively.


Asunto(s)
Kalanchoe/fisiología , Proteínas Mutantes/metabolismo , Proteínas de Plantas/metabolismo , Reproducción Asexuada , Ácido Abscísico/farmacología , Secuencia de Aminoácidos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Giberelinas/farmacología , Kalanchoe/efectos de los fármacos , Kalanchoe/genética , Gotas Lipídicas/efectos de los fármacos , Gotas Lipídicas/metabolismo , Datos de Secuencia Molecular , Fenotipo , Latencia en las Plantas/efectos de los fármacos , Hojas de la Planta/embriología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Piridonas/farmacología , Reproducción Asexuada/efectos de los fármacos , Triazoles/farmacología
2.
Plant Cell ; 24(7): 3153-66, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22822208

RESUMEN

Infection of crop species by parasitic plants is a major agricultural hindrance resulting in substantial crop losses worldwide. Parasitic plants establish vascular connections with the host plant via structures termed haustoria, which allow acquisition of water and nutrients, often to the detriment of the infected host. Despite the agricultural impact of parasitic plants, the molecular and developmental processes by which host/parasitic interactions are established are not well understood. Here, we examine the development and subsequent establishment of haustorial connections by the parasite dodder (Cuscuta pentagona) on tobacco (Nicotiana tabacum) plants. Formation of haustoria in dodder is accompanied by upregulation of dodder KNOTTED-like homeobox transcription factors, including SHOOT MERISTEMLESS-like (STM). We demonstrate interspecific silencing of a STM gene in dodder driven by a vascular-specific promoter in transgenic host plants and find that this silencing disrupts dodder growth. The reduced efficacy of dodder infection on STM RNA interference transgenics results from defects in haustorial connection, development, and establishment. Identification of transgene-specific small RNAs in the parasite, coupled with reduced parasite fecundity and increased growth of the infected host, demonstrates the efficacy of interspecific small RNA-mediated silencing of parasite genes. This technology has the potential to be an effective method of biological control of plant parasite infection.


Asunto(s)
Cuscuta/fisiología , Nicotiana/parasitología , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/genética , Interferencia de ARN/fisiología , ARN Interferente Pequeño/fisiología , Arabidopsis/genética , Cuscuta/citología , Cuscuta/genética , Cuscuta/crecimiento & desarrollo , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Homeodominio/genética , Interacciones Huésped-Parásitos , Brotes de la Planta/citología , Brotes de la Planta/genética , Brotes de la Planta/parasitología , Brotes de la Planta/fisiología , Haz Vascular de Plantas/citología , Haz Vascular de Plantas/genética , Haz Vascular de Plantas/parasitología , Haz Vascular de Plantas/fisiología , Plantas Modificadas Genéticamente , Transporte de ARN , ARN Interferente Pequeño/genética , Nicotiana/citología , Nicotiana/genética , Nicotiana/fisiología
3.
Proc Natl Acad Sci U S A ; 104(39): 15578-83, 2007 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-17893341

RESUMEN

Plant somatic cells have the remarkable ability to regenerate an entire organism. Many species in the genus Kalanchoë, known as "mother of thousands," develop plantlets on the leaf margins. Using key regulators of organogenesis (STM) and embryogenesis (LEC1 and FUS3) processes, we analyzed asexual reproduction in Kalanchoë leaves. Suppression of STM abolished the ability to make plantlets. Here, we report that constitutive plantlet-forming species, like Kalanchoë daigremontiana, form plantlets by coopting both organogenesis and embryogenesis programs into leaves. These species have a defective LEC1 gene and produce nonviable seed, whereas species that produce plantlets only upon stress induction have an intact LEC1 gene and produce viable seed. The latter species are basal in the genus, suggesting that induced-plantlet formation and seed viability are ancestral traits. We provide evidence that asexual reproduction likely initiated as a process of organogenesis and then recruited an embryogenesis program into the leaves in response to loss of sexual reproduction within this genus.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Evolución Biológica , Fragmentación del ADN , Hibridación in Situ , Kalanchoe , Datos de Secuencia Molecular , Mutación , Fenotipo , Filogenia , Plantas Modificadas Genéticamente , Interferencia de ARN , Reproducción Asexuada , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA