Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Transl Med ; 21(1): 867, 2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037126

RESUMEN

BACKGROUND: Neurogenesis is stimulated in the subventricular zone (SVZ) of mice with cortical brain injuries. In most of these injuries, newly generated neuroblasts attempt to migrate toward the injury, accumulating within the corpus callosum not reaching the perilesional area. METHODS: We use a murine model of mechanical cortical brain injury, in which we perform unilateral cortical injuries in the primary motor cortex of adult male mice. We study neurogenesis in the SVZ and perilesional area at 7 and 14 dpi as well as the expression and concentration of the signaling molecule transforming growth factor alpha (TGF-α) and its receptor the epidermal growth factor (EGFR). We use the EGFR inhibitor Afatinib to promote neurogenesis in brain injuries. RESULTS: We show that microglial cells that emerge within the injured area and the SVZ in response to the injury express high levels of TGF-α leading to elevated concentrations of TGF-α in the cerebrospinal fluid. Thus, the number of neuroblasts in the SVZ increases in response to the injury, a large number of these neuroblasts remain immature and proliferate expressing the epidermal growth factor receptor (EGFR) and the proliferation marker Ki67. Restraining TGF-α release with a classical protein kinase C inhibitor reduces the number of these proliferative EGFR+ immature neuroblasts in the SVZ. In accordance, the inhibition of the TGF-α receptor, EGFR promotes migration of neuroblasts toward the injury leading to an elevated number of neuroblasts within the perilesional area. CONCLUSIONS: Our results indicate that in response to an injury, microglial cells activated within the injury and the SVZ release TGF-α, activating the EGFR present in the neuroblasts membrane inducing their proliferation, delaying maturation and negatively regulating migration. The inactivation of this signaling pathway stimulates neuroblast migration toward the injury and enhances the quantity of neuroblasts within the injured area. These results suggest that these proteins may be used as target molecules to regenerate brain injuries.


Asunto(s)
Lesiones Encefálicas , Células-Madre Neurales , Animales , Masculino , Ratones , Lesiones Encefálicas/metabolismo , Movimiento Celular , Receptores ErbB/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Factor de Crecimiento Transformador alfa
2.
J Quant Spectrosc Radiat Transf ; 302: 108567, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36945203

RESUMEN

Objective: To conduct a proof-of-concept study of the detection of two synthetic models of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using polarimetric imaging. Approach: Two SARS-CoV-2 models were prepared as engineered lentiviruses pseudotyped with the G protein of the vesicular stomatitis virus, and with the characteristic Spike protein of SARS-CoV-2. Samples were prepared in two biofluids (saline solution and artificial saliva), in four concentrations, and deposited as 5-µL droplets on a supporting plate. The angles of maximal degree of linear polarization (DLP) of light diffusely scattered from dry residues were determined using Mueller polarimetry from87 samples at 405 nm and 514 nm. A polarimetric camera was used for imaging several samples under 380-420 nm illumination at angles similar to those of maximal DLP. Per-pixel image analysis included quantification and combination of polarization feature descriptors in 475 samples. Main results: The angles (from sample surface) of maximal DLP were 3° for 405 nm and 6° for 514 nm. Similar viral particles that differed only in the characteristic spike protein of the SARS-CoV-2, their corresponding negative controls, fluids, and the sample holder were discerned at 10-degree and 15-degree configurations. Significance: Polarimetric imaging in the visible spectrum may help improve fast, non-contact detection and identification of viral particles, and/or other microbes such as tuberculosis, in multiple dry fluid samples simultaneously, particularly when combined with other imaging modalities. Further analysis including realistic concentrations of real SARS-CoV-2 viral particles in relevant human fluids is required. Polarimetric imaging under visible light may contribute to a fast, cost-effective screening of SARS-CoV-2 and other pathogens when combined with other imaging modalities.

3.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37108807

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of the Coronavirus Disease 2019 (COVID-19) pandemic, which is still a health issue worldwide mostly due to a high rate of contagiousness conferred by the high-affinity binding between cell viral receptors, Angiotensin-Converting Enzyme 2 (ACE2) and SARS-CoV-2 Spike protein. Therapies have been developed that rely on the use of antibodies or the induction of their production (vaccination), but despite vaccination being still largely protective, the efficacy of antibody-based therapies wanes with the advent of new viral variants. Chimeric Antigen Receptor (CAR) therapy has shown promise for tumors and has also been proposed for COVID-19 treatment, but as recognition of CARs still relies on antibody-derived sequences, they will still be hampered by the high evasion capacity of the virus. In this manuscript, we show the results from CAR-like constructs with a recognition domain based on the ACE2 viral receptor, whose ability to bind the virus will not wane, as Spike/ACE2 interaction is pivotal for viral entry. Moreover, we have developed a CAR construct based on an affinity-optimized ACE2 and showed that both wild-type and affinity-optimized ACE2 CARs drive activation of a T cell line in response to SARS-CoV-2 Spike protein expressed on a pulmonary cell line. Our work sets the stage for the development of CAR-like constructs against infectious agents that would not be affected by viral escape mutations and could be developed as soon as the receptor is identified.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Enzima Convertidora de Angiotensina 2/metabolismo , Unión Proteica , Tratamiento Farmacológico de COVID-19 , Linfocitos T/metabolismo , Proteínas Portadoras/metabolismo
4.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37108335

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons in the spinal cord, brain stem, and cerebral cortex. Biomarkers for ALS are essential for disease detection and to provide information on potential therapeutic targets. Aminopeptidases catalyze the cleavage of amino acids from the amino terminus of protein or substrates such as neuropeptides. Since certain aminopeptidases are known to increase the risk of neurodegeneration, such mechanisms may reveal new targets to determine their association with ALS risk and their interest as a diagnostic biomarker. The authors performed a systematic review and meta-analyses of genome-wide association studies (GWASs) to identify reported aminopeptidases genetic loci associated with the risk of ALS. PubMed, Scopus, CINAHL, ISI Web of Science, ProQuest, LILACS, and Cochrane databases were searched to retrieve eligible studies in English or Spanish, published up to 27 January 2023. A total of 16 studies were included in this systematic review, where a series of aminopeptidases could be related to ALS and could be promising biomarkers (DPP1, DPP2, DPP4, LeuAP, pGluAP, and PSA/NPEPPS). The literature reported the association of single-nucleotide polymorphisms (SNPs: rs10260404 and rs17174381) with the risk of ALS. The genetic variation rs10260404 in the DPP6 gene was identified to be highly associated with ALS susceptibility, but meta-analyses of genotypes in five studies in a matched cohort of different ancestry (1873 cases and 1861 control subjects) showed no ALS risk association. Meta-analyses of eight studies for minor allele frequency (MAF) also found no ALS association for the "C" allele. The systematic review identified aminopeptidases as possible biomarkers. However, the meta-analyses for rs1060404 of DPP6 do not show a risk associated with ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Aminopeptidasas , Estudio de Asociación del Genoma Completo , Pronóstico , Biomarcadores
5.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37175995

RESUMEN

Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) infection triggers various events from molecular to tissue level, which in turn is given by the intrinsic characteristics of each patient. Given the molecular diversity characteristic of each cellular phenotype, the possible cytopathic, tissue and clinical effects are difficult to predict, which determines the heterogeneity of COVID-19 symptoms. The purpose of this article is to provide a comprehensive review of the cytopathic effects of SARS-CoV-2 on various cell types, focusing on the development of COVID-19, which in turn may lead, in some patients, to a persistence of symptoms after recovery from the disease, a condition known as long COVID. We describe the molecular mechanisms underlying virus-host interactions, including alterations in protein expression, intracellular signaling pathways, and immune responses. In particular, the article highlights the potential impact of these cytopathies on cellular function and clinical outcomes, such as immune dysregulation, neuropsychiatric disorders, and organ damage. The article concludes by discussing future directions for research and implications for the management and treatment of COVID-19 and long COVID.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Síndrome Post Agudo de COVID-19 , Peptidil-Dipeptidasa A/metabolismo , Interacciones Microbiota-Huesped
6.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36430595

RESUMEN

Polyphosphate (polyP), a phosphate polymer released by activated platelets, may modulate various stages of hemostasis by binding to blood proteins. In this context, we previously reported that polyP binds to the von Willebrand factor (VWF). One of the most significant functions of VWF is to bind to and protect the blood circulating Factor VIII (FVIII). Therefore, here, we study the role of polyP in the VWF-FVIII complex in vitro and suggest its biological significance. Surface plasmon resonance and electrophoretic mobility assays indicated that polyP binds dynamically to VWF only in the absence of FVIII. Using the VWF Ristocetin Cofactor assay, the most accepted method for studying VWF in platelet adhesion, we found that polyP activates this role of VWF only at low levels of FVIII, such as in plasmas with chemically depleted FVIII and plasmas from severe hemophilia A patients. Moreover, we demonstrated that FVIII competes with polyP in the activation of VWF. Finally, polyP also increases the binding of VWF to platelets in samples from patients with type 2 and type 3 von Willebrand disease. We propose that polyP may be used in designing new therapies to activate VWF when FVIII cannot be used.


Asunto(s)
Polifosfatos , Factor de von Willebrand , Humanos , Factor VIII/metabolismo , Hemostáticos/metabolismo , Hemostáticos/farmacología , Complejo GPIb-IX de Glicoproteína Plaquetaria , Polifosfatos/metabolismo , Polifosfatos/farmacología , Factor de von Willebrand/metabolismo
7.
Int J Mol Sci ; 22(11)2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34070747

RESUMEN

Colorectal cancer (CRC) is one of the main causes of cancer death in the world. Post-translational modifications (PTMs) have been extensively studied in malignancies due to its relevance in tumor pathogenesis and therapy. This review is focused on the dysregulation of glycosyltransferase expression in CRC and its impact in cell function and in several biological pathways associated with CRC pathogenesis, prognosis and therapeutic approaches. Glycan structures act as interface molecules between cells and their environment and in several cases facilitate molecule function. CRC tissue shows alterations in glycan structures decorating molecules, such as annexin-1, mucins, heat shock protein 90 (Hsp90), ß1 integrin, carcinoembryonic antigen (CEA), epidermal growth factor receptor (EGFR), insulin-like growth factor-binding protein 3 (IGFBP3), transforming growth factor beta (TGF-ß) receptors, Fas (CD95), PD-L1, decorin, sorbin and SH3 domain-containing protein 1 (SORBS1), CD147 and glycosphingolipids. All of these are described as key molecules in oncogenesis and metastasis. Therefore, glycosylation in CRC can affect cell migration, cell-cell adhesion, actin polymerization, mitosis, cell membrane repair, apoptosis, cell differentiation, stemness regulation, intestinal mucosal barrier integrity, immune system regulation, T cell polarization and gut microbiota composition; all such functions are associated with the prognosis and evolution of the disease. According to these findings, multiple strategies have been evaluated to alter oligosaccharide processing and to modify glycoconjugate structures in order to control CRC progression and prevent metastasis. Additionally, immunotherapy approaches have contemplated the use of neo-antigens, generated by altered glycosylation, as targets for tumor-specific T cells or engineered CAR (Chimeric antigen receptors) T cells.


Asunto(s)
Neoplasias Colorrectales/genética , Glicoesfingolípidos/inmunología , Glicosiltransferasas/genética , Mucinas/genética , Proteínas de Neoplasias/genética , Procesamiento Proteico-Postraduccional , Anexina A1/genética , Anexina A1/inmunología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Decorina/genética , Decorina/inmunología , Receptores ErbB/genética , Receptores ErbB/inmunología , Regulación Neoplásica de la Expresión Génica , Glicoesfingolípidos/metabolismo , Glicosilación , Glicosiltransferasas/inmunología , Humanos , Inmunoterapia Adoptiva/métodos , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/inmunología , Integrina beta1/genética , Integrina beta1/inmunología , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/inmunología , Mucinas/inmunología , Proteínas de Neoplasias/inmunología , Receptor fas/genética , Receptor fas/inmunología
8.
J Mol Cell Cardiol ; 105: 12-23, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28223221

RESUMEN

Endothelial progenitor cells (EPCs) constitute a promising alternative in cardiovascular regenerative medicine due to their assigned role in angiogenesis and vascular repair. In response to injury, EPCs promote vascular remodeling by replacement of damaged endothelial cells and/or by secreting angiogenic factors over the damaged tissue. Nevertheless, such mechanisms need to be further characterized. In the current approach we have evaluated the initial response of early EPCs (eEPCs) from healthy individuals after direct contact with the factors released by carotid arteries complicated with atherosclerotic plaques (AP), in order to understand the mechanisms underlying the neovascularization and remodeling properties assigned to these cells. Herein, we found that the AP secretome stimulated eEPCs proliferation and mobilization ex vivo, and such increase was accompanied by augmented permeability, cell contraction and also an increase of cell-cell adhesion in association with raised vinculin levels. Furthermore, a comparative mass spectrometry analysis of control versus stimulated eEPCs revealed a differential expression of proteins in the AP treated cells, mostly involved in cell migration, proliferation and vascular remodeling. Some of these protein changes were also detected in the eEPCs isolated from atherosclerotic patients compared to eEPCs from healthy donors. We have shown, for the first time, that the AP released factors activate eEPCs ex vivo by inducing their mobilization together with the expression of vasculogenic related markers. The present approach could be taken as a ex vivo model to study the initial activation of vascular cells in atherosclerosis and also to evaluate strategies looking to potentiate the mobilization of EPCs prior to clinical applications.


Asunto(s)
Células Progenitoras Endoteliales/metabolismo , Placa Aterosclerótica/metabolismo , Proteoma , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Humanos , Permeabilidad , Placa Aterosclerótica/patología , Proteómica/métodos
9.
Biochem J ; 450(3): 511-21, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23240581

RESUMEN

Engagement of the TCR (T-cell receptor) induces tyrosine phosphorylation of the LAT (linker for the activation of T-cells) adaptor, and thereby it recruits several cytosolic mediators for downstream signalling pathways. The Fas protein is essential for T-lymphocyte apoptosis, and following Fas engagement, many proteins are proteolytically cleaved, including several molecules that are important for the transduction of TCR intracellular signals. In the present study, we demonstrate that the adaptor LAT is also subject to a proteolytic cleavage in mature T-lymphocytes and thymocytes in response to Fas engagement, and also on TCR stimulation, and we identify three aspartic acid residues at which LAT is cleaved. Interestingly, these aspartic acid residues are located in proximity to several functionally important tyrosine residues of LAT, raising the possibility that their phosphorylation could modulate LAT cleavage. Consistent with that hypothesis, we show that induction of phosphorylation by pervanadate or H2O2 in Jurkat cells and thymocytes inhibits Fas-mediated cleavage of LAT. Moreover, we show that LAT proteolysis is also enhanced during anergy induction of primary human T-cells, suggesting that LAT cleavage may act as a regulator of TCR-mediated activation of T-cells and not only as a transducer of cell death promoting stimuli.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteolisis , Receptor fas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células Cultivadas , Células HEK293 , Humanos , Células Jurkat , Activación de Linfocitos/genética , Activación de Linfocitos/fisiología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Fosforilación/genética , Fosforilación/fisiología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/fisiología , Tirosina/metabolismo , Receptor fas/genética , Receptor fas/fisiología
10.
Microorganisms ; 11(12)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38138141

RESUMEN

There is still a long way ahead regarding the COVID-19 pandemic, since emerging waves remain a daunting challenge to the healthcare system. For this reason, the development of new preventive tools and therapeutic strategies to deal with the disease have been necessary, among which serological assays have played a key role in the control of COVID-19 outbreaks and vaccine development. Here, we have developed and evaluated an immunoassay capable of simultaneously detecting multiple IgG antibodies against different SARS-CoV-2 antigens through the use of Bio-PlexTM technology. Additionally, we have analyzed the antibody response in COVID-19 patients with different clinical profiles in Cadiz, Spain. The multiplex immunoassay presented is a high-throughput and robust immune response monitoring tool capable of concurrently detecting anti-S1, anti-NC and anti-RBD IgG antibodies in serum with a very high sensitivity (94.34-97.96%) and specificity (91.84-100%). Therefore, the immunoassay proposed herein may be a useful monitoring tool for individual humoral immunity against SARS-CoV-2, as well as for epidemiological surveillance. In addition, we show the values of antibodies against multiple SARS-CoV-2 antigens and their correlation with the different clinical profiles of unvaccinated COVID-19 patients in Cadiz, Spain, during the first and second waves of the pandemic.

11.
Clin Sci (Lond) ; 123(1): 15-27, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22214248

RESUMEN

HCV (hepatitis C virus) infection is a serious health care problem that affects more than 170 million people worldwide. Viral clearance depends on the development of a successful cellular immune response against the virus. Interestingly, such a response is altered in chronically infected patients, leading to chronic hepatitis that can result in liver fibrosis, cirrhosis and hepatocellular carcinoma. Among the mechanisms that have been described as being responsible for the immune suppression caused by the virus, Treg-cells (regulatory T-cells) are emerging as an essential component. In the present work we aim to study the effect of HCV-core protein in the development of T-cells with regulatory-like function. Using a third-generation lentiviral system to express HCV-core in CD4+ Jurkat T-cells, we describe that HCV-core-expressing Jurkat cells show an up-regulation of FOXP3 (forkhead box P3) and CTLA-4 (cytotoxic T-lymphocyte antigen-4). Moreover, we show that HCV-core-transduced Jurkat cells are able to suppress CD4+ and CD8+ T-cell responses to anti-CD3 plus anti-CD28 stimulation.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Hepacivirus/inmunología , Antígenos de la Hepatitis C/metabolismo , Hepatitis C Crónica/inmunología , Inmunidad Celular , Linfocitos T Reguladores/metabolismo , Proteínas del Núcleo Viral/metabolismo , Western Blotting , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Antígeno CTLA-4/metabolismo , Electroforesis en Gel de Poliacrilamida , Humanos , Interleucina-2/metabolismo , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Células Jurkat , Reacción en Cadena en Tiempo Real de la Polimerasa , Linfocitos T Reguladores/virología , Transducción Genética , Regulación hacia Arriba
12.
Bioorg Med Chem ; 20(22): 6662-8, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23063518

RESUMEN

Bioactive natural products are a potential source of new pharmaceuticals since they offer new modes of action and more specific activities. The use of derivatization also enables the optimal structure for their biological activity to be determined. In this study several epoxycurcuphenol derivatives were synthesized. The substitution pattern on the aromatic and oxirane rings was varied along with that at the benzylic position and the length of the side chain was altered. These changes were made in order to gain a deeper understanding of the structural requirements for activity. The biological activities of these compounds were evaluated on the human leukemia cell line Jurkat using an antiproliferative assay. The activity results and structural requirements are discussed.


Asunto(s)
Sesquiterpenos/química , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Proliferación Celular/efectos de los fármacos , Óxido de Etileno/química , Humanos , Células Jurkat , Leucemia/patología , Sesquiterpenos/síntesis química , Sesquiterpenos/toxicidad , Estereoisomerismo , Relación Estructura-Actividad
13.
Pharmaceutics ; 14(6)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35745693

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia. The pathophysiology of this disease is characterized by the accumulation of amyloid-ß, leading to the formation of senile plaques, and by the intracellular presence of neurofibrillary tangles based on hyperphosphorylated tau protein. In the therapeutic approach to AD, we can identify three important fronts: the approved drugs currently available for the treatment of the disease, which include aducanumab, donepezil, galantamine, rivastigmine, memantine, and a combination of memantine and donepezil; therapies under investigation that work mainly on Aß pathology and tau pathology, and which include γ-secretase inhibitors, ß-secretase inhibitors, α-secretase modulators, aggregation inhibitors, metal interfering drugs, drugs that enhance Aß clearance, inhibitors of tau protein hyperphosphorylation, tau protein aggregation inhibitors, and drugs that promote the clearance of tau, and finally, other alternative therapies designed to improve lifestyle, thus contributing to the prevention of the disease. Therefore, the aim of this review was to analyze and describe current treatments and possible future alternatives in the therapeutic approach to AD.

14.
Toxins (Basel) ; 14(9)2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36136537

RESUMEN

In the work described here, a number of sesquiterpenes and benzoxazinoids from natural sources, along with their easily accessible derivatives, were evaluated against the main protease, RNA replicase and spike glycoprotein of SARS-CoV-2 by molecular docking. These natural products and their derivatives have previously shown remarkable antiviral activities. The most relevant compounds were the 4-fluoro derivatives of santamarine, reynosin and 2-amino-3H-phenoxazin-3-one in terms of the docking score. Those compounds fulfill the Lipinski's rule, so they were selected for the analysis by molecular dynamics, and the kinetic stabilities of the complexes were assessed. The addition of the 4-fluorobenzoate fragment to the natural products enhances their potential against all of the proteins tested, and the complex stability after 50 ns validates the inhibition calculated. The derivatives prepared from reynosin and 2-amino-3H-phenoxazin-3-one are able to generate more hydrogen bonds with the Mpro, thus enhancing the stability of the protein-ligand and generating a long-term complex for inhibition. The 4-fluoro derivate of santamarine and reynosin shows to be really active against the spike protein, with the RMSD site fluctuation lower than 1.5 Å. Stabilization is mainly achieved by the hydrogen-bond interactions, and the stabilization is improved by the 4-fluorobenzoate fragment being added. Those compounds tested in silico reach as candidates from natural sources to fight this virus, and the results concluded that the addition of the 4-fluorobenzoate fragment to the natural products enhances their inhibition potential against the main protease, RNA replicase and spike protein of SARS-CoV-2.


Asunto(s)
Productos Biológicos , COVID-19 , Sesquiterpenos , Antivirales/química , Antivirales/farmacología , Benzoatos , Benzoxazinas/farmacología , Productos Biológicos/farmacología , Proteasas 3C de Coronavirus , Humanos , Hidrógeno , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacología , ARN Polimerasa Dependiente del ARN , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
15.
Sci Rep ; 12(1): 2356, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35181702

RESUMEN

Effective testing is essential to control the coronavirus disease 2019 (COVID-19) transmission. Here we report a-proof-of-concept study on hyperspectral image analysis in the visible and near-infrared range for primary screening at the point-of-care of SARS-CoV-2. We apply spectral feature descriptors, partial least square-discriminant analysis, and artificial intelligence to extract information from optical diffuse reflectance measurements from 5 µL fluid samples at pixel, droplet, and patient levels. We discern preparations of engineered lentiviral particles pseudotyped with the spike protein of the SARS-CoV-2 from those with the G protein of the vesicular stomatitis virus in saline solution and artificial saliva. We report a quantitative analysis of 72 samples of nasopharyngeal exudate in a range of SARS-CoV-2 viral loads, and a descriptive study of another 32 fresh human saliva samples. Sensitivity for classification of exudates was 100% with peak specificity of 87.5% for discernment from PCR-negative but symptomatic cases. Proposed technology is reagent-free, fast, and scalable, and could substantially reduce the number of molecular tests currently required for COVID-19 mass screening strategies even in resource-limited settings.


Asunto(s)
Exudados y Transudados/virología , Tamizaje Masivo/métodos , SARS-CoV-2/aislamiento & purificación , Saliva/virología , Espectroscopía Infrarroja Corta , Humanos , Pruebas en el Punto de Atención , Prueba de Estudio Conceptual
16.
Clin Epigenetics ; 13(1): 39, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602320

RESUMEN

BACKGROUND: In this review, we were interested to identify the wide universe of enzymes associated with epigenetic modifications, whose gene expression is regulated by miRNAs with a high relative abundance in Crohn's disease (CD) affected tissues, with the aim to determine their impact in the pathogenesis and evolution of the disease. METHODS: We used HMDD and Bibliometrix R-package in order to identify the miRNAs overexpressed in CD. The identified enzymes associated with epigenetic mechanisms and post-translational modifications, regulated by miRNAs upregulated in CD, were analyzed using String v11 database. RESULTS: We found 190 miRNAs with great abundance in patients with CD, of which 26 miRNAs regulate the gene expression of enzymes known to catalyze epigenetic modifications involved in essentials pathophysiological processes, such as chromatin architecture reorganization, immune response regulation including CD4+ T cells polarization, integrity of gut mucosa, gut microbiota composition and tumorigenesis. CONCLUSION: The integrated analysis of miRNAs with a high relative abundance in patients with CD showed a combined and superimposed gene expression regulation of enzymes associated with relevant epigenetic mechanisms and that could explain, in part, the pathogenesis of CD.


Asunto(s)
Enfermedad de Crohn/enzimología , Enfermedad de Crohn/genética , MicroARNs/genética , Linfocitos T CD4-Positivos/metabolismo , Ensamble y Desensamble de Cromatina/genética , Islas de CpG , Enfermedad de Crohn/fisiopatología , Metilación de ADN , Epigénesis Genética , Regulación de la Expresión Génica , Humanos , Inmunidad/genética , Mapas de Interacción de Proteínas/genética , Procesamiento Proteico-Postraduccional/genética
17.
Front Cell Dev Biol ; 8: 561503, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042995

RESUMEN

The adaptor LAT plays a crucial role in the transduction of signals coming from the TCR/CD3 complex. Phosphorylation of some of its tyrosines generates recruitment sites for other cytosolic signaling molecules. Tyrosine 132 in human LAT is essential for PLC-γ activation and calcium influx generation. It has been recently reported that a conserved glycine residue preceding tyrosine 132 decreases its phosphorylation kinetics, which constitutes a mechanism for ligand discrimination. Here we confirm that a LAT mutant in which glycine 131 has been substituted by an aspartate (LATG131D) increases phosphorylation of Tyr132, PLC-γ activation and calcium influx generation. Interestingly, the LATG131D mutant has a slower protein turnover while being equally sensitive to Fas-mediated protein cleavage by caspases. Moreover, J.CaM2 cells expressing LATG131D secrete greater amounts of interleukin-2 (IL-2) in response to CD3/CD28 engagement. However, despite this increased IL-2 secretion, J.CaM2 cells expressing the LATG131D mutant are more sensitive to inhibition of IL-2 production by pre-treatment with anti-CD3, which points to a possible role of this residue in the generation of anergy. Our results suggest that the increased kinetics of LAT Tyr132 phosphorylation could contribute to the establishment of T cell anergy, and thus constitutes an earliest known intracellular event responsible for the induction of peripheral tolerance.

18.
Endocrinol Diabetes Nutr (Engl Ed) ; 67(2): 113-121, 2020 Feb.
Artículo en Inglés, Español | MEDLINE | ID: mdl-31204279

RESUMEN

INTRODUCTION: Unhealthy lifestyle and inadequate diet could influence the development of future cardiometabolic disease. The main aim of this study was to determine the association between aerobic fitness and cardiometabolic risk factors in adults, whether this relation is depends of adherence to Mediterranean diet (MD). A secondary aim was to study the combined effect of aerobic capacity and adherence to MD on global cardiometabolic risk score (CMRS). METHOD: A total of 79 adults (38% women) enrolled between 18-40 year from Cádiz. We measured adiposity indicators, blood pressure, triglycerides, glucose and inflammatory profile (interleukin-6 and tumor necrosis factor) and was computed (CMRS). Aerobic fitness was measured by maximal oxygen comsuption through an incremental stress test by cycleergometer. The MD patterns was measured using the questionnaire of adherence to MD. The association between aerobic fitness and cardiometabolic risk factors was examined using a lineal regression and it was adjusted for different confounders. CMRS on the lifestyle was analyzed using the ANOVA test, with statistical significance level of P<0.05 in Bonferroni. RESULTS: Linear regression showed inverse association between aerobic fitness and cardiometabolic risk factors (all P≤0.05) in the model without adjustment. Blood pressure and triglycerides lost the association after adjust model for sex, age, and adherence to MD. Participants with high aerobic fitness and high adherence to MD show a lowest CMRS (-1.083±2.325 vs. 2.802±1.759). CONCLUSIONS: Aerobic fitness was inversely associated with fatness risk factors, that relationship is independent to adherence to MD. A high adherence to MD could modulate blood pressure. A combination of high aerobic capacity and high adherence to MD could reduce the adverse consecuence of a low adherencie to MD.


Asunto(s)
Factores de Riesgo Cardiometabólico , Dieta Mediterránea , Ejercicio Físico , Adolescente , Adulto , Estudios Transversales , Femenino , Humanos , Masculino , Adulto Joven
19.
Cancers (Basel) ; 12(10)2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076479

RESUMEN

Killer-cell immunoglobulin-like receptors (KIR) are expressed by natural killer (NK) and effector T cells. Although KIR+ T cells accumulate in oncologic patients, their role in cancer immune response remains elusive. This study explored the role of KIR+CD8+ T cells in cancer immunosurveillance by analyzing their frequency at diagnosis in the blood of 249 patients (80 melanomas, 80 bladder cancers, and 89 ovarian cancers), their relationship with overall survival (OS) of patients, and their gene expression profiles. KIR2DL1+ CD8+ T cells expanded in the presence of HLA-C2-ligands in patients who survived, but it did not in patients who died. In contrast, presence of HLA-C1-ligands was associated with dose-dependent expansions of KIR2DL2/S2+ CD8+ T cells and with shorter OS. KIR interactions with their specific ligands profoundly impacted CD8+ T cell expression profiles, involving multiple signaling pathways, effector functions, the secretome, and consequently, the cellular microenvironment, which could impact their cancer immunosurveillance capacities. KIR2DL1/S1+ CD8+ T cells showed a gene expression signature related to efficient tumor immunosurveillance, whereas KIR2DL2/L3/S2+CD8+ T cells showed transcriptomic profiles related to suppressive anti-tumor responses. These results could be the basis for the discovery of new therapeutic targets so that the outcome of patients with cancer can be improved.

20.
Mol Immunol ; 45(7): 1863-71, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18078995

RESUMEN

The nuclear factor of activated T cells (NFAT) family of transcription factors is pivotal for T lymphocyte functionality. All relevant NFAT activation events upon T cells stimulation such as nuclear translocation, DNA binding, and transcriptional activity have been shown to be dictated by its phosphorylation state. Here, we provide evidence for a novel post-translational modification that regulates NFAT. Indeed, NFATc1 and NFATc2 are poly(ADP-ribosyl)ated by poly-ADP-ribose polymerase-1 (PARP-1). Moreover, we have also found a physical interaction between PARP-1 and both NFATc1 and NFATc2. Interestingly, PARP is activated during T cell stimulation in the absence of DNA damage, leading to ADP-ribose polymers formation and transfer to nuclear acceptor proteins. Our data suggest that poly(ADP-ribosyl)ation modulates the activation of NFAT in T cells, as PARP inhibition causes an increase in NFAT-dependent transactivation and a delay in NFAT nuclear export. Poly(ADP-ribosyl)ation will expedited NFAT export from the nucleus directly or by priming/facilitating NFAT phosphorylation. Altogether, these data point to PARP-1 and poly(ADP-ribosyl)ation as a novel regulatory mechanism of NFAT at nuclear level, suggesting a potential use of PARP as a new therapeutic target in the modulation of NFAT.


Asunto(s)
Factores de Transcripción NFATC/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Linfocitos T/enzimología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Adulto , Animales , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Inducción Enzimática/efectos de los fármacos , Citometría de Flujo , Células HeLa , Histonas/metabolismo , Humanos , Ionomicina/farmacología , Células Jurkat , Activación de Linfocitos/efectos de los fármacos , Ratones , Fosforilación/efectos de los fármacos , Poli Adenosina Difosfato Ribosa/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Unión Proteica/efectos de los fármacos , Especificidad por Sustrato/efectos de los fármacos , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacología , Activación Transcripcional/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA