RESUMEN
The development of the nervous system is a time-ordered and multi-stepped process that requires neural specification, axonal navigation and arbor refinement at the target tissues. Previous studies have demonstrated that the transcription factor Zic2 is necessary and sufficient for the specification of retinal ganglion cells (RGCs) that project ipsilaterally at the optic chiasm midline. Here, we report that, in addition, Zic2 controls the refinement of eye-specific inputs in the visual targets by regulating directly the expression of the serotonin transporter (Sert), which is involved in the modulation of activity-dependent mechanisms during the wiring of sensory circuits. In agreement with these findings, RGCs that express Zic2 ectopically show defects in axonal refinement at the visual targets and respond to pharmacological blockage of Sert, whereas Zic2-negative contralateral RGCs do not. These results link, at the molecular level, early events in neural differentiation with late activity-dependent processes and propose a mechanism for the establishment of eye-specific domains at the visual targets.
Asunto(s)
Axones/fisiología , Regulación del Desarrollo de la Expresión Génica , Células Ganglionares de la Retina/fisiología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Factores de Transcripción/fisiología , Animales , Biomarcadores/metabolismo , Western Blotting , Inmunoprecipitación de Cromatina , Femenino , Perfilación de la Expresión Génica , Técnicas para Inmunoenzimas , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismoRESUMEN
Cortical neurogenesis follows a simple lineage: apical radial glia cells (RGCs) generate basal progenitors, and these produce neurons. How this occurs in species with expanded germinal zones and a folded cortex, such as human, remains unclear. We used single-cell RNA sequencing from individual cortical germinal zones in ferret and barcoded lineage tracking to determine the molecular diversity of progenitor cells and their lineages. We identified multiple RGC classes that initiate parallel lineages, converging onto a common class of newborn neuron. Parallel RGC classes and transcriptomic trajectories were repeated across germinal zones and conserved in ferret and human, but not in mouse. Neurons followed parallel differentiation trajectories in the gyrus and sulcus, with different expressions of human cortical malformation genes. Progenitor cell lineage multiplicity is conserved in the folded mammalian cerebral cortex.
Asunto(s)
Corteza Cerebral , Hurones , Animales , Ratones , Humanos , Linaje de la Célula/fisiología , Neuronas/fisiología , Diferenciación Celular , NeurogénesisRESUMEN
Barrel cortex integrates contra- and ipsilateral whiskers' inputs. While contralateral inputs depend on the thalamocortical innervation, ipsilateral ones are thought to rely on callosal axons. These are more abundant in the barrel cortex region bordering with S2 and containing the row A-whiskers representation, the row lying nearest to the facial midline. Here, we ask what role this callosal axonal arrangement plays in ipsilateral tactile signaling. We found that novel object exploration with ipsilateral whiskers confines c-Fos expression within the highly callosal subregion. Targeting this area with in vivo patch-clamp recordings revealed neurons with uniquely strong ipsilateral responses dependent on the corpus callosum, as assessed by tetrodotoxin silencing and by optogenetic activation of the contralateral hemisphere. Still, in this area, stimulation of contra- or ipsilateral row A-whiskers evoked an indistinguishable response in some neurons, mostly located in layers 5/6, indicating their involvement in the midline representation of the whiskers' sensory space.
Asunto(s)
Corteza Cerebral , Cuerpo Calloso , Cuerpo Calloso/fisiología , Neuronas/fisiología , Axones , Tacto/fisiologíaRESUMEN
In animals with binocular vision, retinal fibers either project across the midline or they remain on the same side of the ventral diencephalon, forming an X-shaped commissure known as the optic chiasm. The correct formation of the optic chiasm during development is essential to establish a fully functional visual system. Visual dysfunction associated with axonal misrouting at the optic chiasm has been described in albino individuals and in patients with non-decussating retinal-fugal fiber syndrome. Although little is known about the causes of retinal misrouting in these conditions, the molecular mechanisms responsible for the formation of the optic chiasm are beginning to be elucidated in vertebrates. This review focuses on our current knowledge of how the optic chiasm forms, which will hopefully help us to better understand these congenital anomalies.
Asunto(s)
Quiasma Óptico/embriología , Quiasma Óptico/fisiología , Animales , Axones/metabolismo , Tipificación del Cuerpo , Diencéfalo/metabolismo , Drosophila , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Modelos Biológicos , Retina/embriología , Retina/metabolismo , Transducción de SeñalRESUMEN
BACKGROUND: The neural retina is a highly structured tissue of the central nervous system that is formed by seven different cell types that are arranged in layers. Despite much effort, the genetic mechanisms that underlie retinal development are still poorly understood. In recent years, large-scale genomic analyses have identified candidate genes that may play a role in retinal neurogenesis, axon guidance and other key processes during the development of the visual system. Thus, new and rapid techniques are now required to carry out high-throughput analyses of all these candidate genes in mammals. Gene delivery techniques have been described to express exogenous proteins in the retina of newborn mice but these approaches do not efficiently introduce genes into the only retinal cell type that transmits visual information to the brain, the retinal ganglion cells (RGCs). RESULTS: Here we show that RGCs can be targeted for gene expression by in utero electroporation of the eye of mouse embryos. Accordingly, using this technique we have monitored the morphology of electroporated RGCs expressing reporter genes at different developmental stages, as well as their projection to higher visual targets. CONCLUSION: Our method to deliver ectopic genes into mouse embryonic retinas enables us to follow the course of the entire retinofugal pathway by visualizing RGC bodies and axons. Thus, this technique will permit to perform functional studies in vivo focusing on neurogenesis, axon guidance, axon projection patterning or neural connectivity in mammals.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Técnicas de Transferencia de Gen , Células Ganglionares de la Retina , Animales , Electroporación , Embrión de Mamíferos , Femenino , Genes Reporteros , Ratones , Ratones Endogámicos C57BL , Morfogénesis , EmbarazoRESUMEN
Neural circuits in the cerebral cortex consist of excitatory pyramidal cells and inhibitory interneurons. These two main classes of cortical neurons follow largely different genetic programs, yet they assemble into highly specialized circuits during development following a very precise choreography. Previous studies have shown that signals produced by pyramidal cells influence the migration of cortical interneurons, but the molecular nature of these factors has remained elusive. Here, we identified Neuregulin 3 (Nrg3) as a chemoattractive factor expressed by developing pyramidal cells that guides the allocation of cortical interneurons in the developing cortical plate. Gain- and loss-of-function approaches reveal that Nrg3 modulates the migration of interneurons into the cortical plate in a process that is dependent on the tyrosine kinase receptor ErbB4. Perturbation of Nrg3 signaling in conditional mutants leads to abnormal lamination of cortical interneurons. Nrg3 is therefore a critical mediator in the assembly of cortical inhibitory circuits.
Asunto(s)
Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Animales , Movimiento Celular/fisiología , Corteza Cerebral/metabolismo , Ratones , Ratones Endogámicos C57BL , Neurregulinas , Células Piramidales/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor ErbB-4/metabolismo , Transducción de Señal/fisiologíaRESUMEN
HCN4 is a hyperpolarization-activated nucleotide-gated cation channel involved in the generation of the I(f) current that drives cardiac pacemaker activity. Previous studies have demonstrated that HCN4 is highly expressed in a restricted manner in adult sinoatrial (SA) node [Eur. J. Biochem. 268 (2001) 1646]. However, its developmental expression pattern is unknown. We have examined expression of HCN4 mRNA during mouse heart development. HCN4 mRNA was first detected in the cardiac crescent at embryonic day (ED) 7.5. At ED 8 it was symmetrically located in the most caudal portion of the heart tube, the sinus venosus where pacemaker activity has previously been reported [Am. J. Physiol. 212 (1967) 407]. With further development, HCN4 expression became asymmetrically distributed, occupying the dorsal wall of the right atria, and was progressively restricted to the junction of the right atrial appendage and the superior vena cava. The site of HCN4 expression in late embryonic heart coincided with the location of the SA node in postnatal and adult heart [Cardiovasc. Res. 52 (2001) 51]. Our results suggest that HCN4 may be a unique marker of the developing SA node.
Asunto(s)
Corazón/embriología , Canales Iónicos/metabolismo , Ratones/embriología , Animales , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Expresión Génica , Corazón/anatomía & histología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Hibridación in Situ , Canales Iónicos/genética , Ratones/genética , Ratones/metabolismo , Miocardio/metabolismo , ARN Mensajero/análisis , ARN Mensajero/metabolismoRESUMEN
In an attempt to elucidate the molecular basis of neuronal migration and corticogenesis, we performed subtractive hybridization of mRNAs from the upper cortical layers (layer I and upper cortical plate) against mRNAs from the remaining cerebral cortex at E15-E16. We obtained a collection of subtracted cDNA clones and analyzed their 3' UTR sequences, 47% of which correspond to EST sequences, and may represent novel products. Among the cloned sequences, we identified gene products that have not been reported in brain or in the cerebral cortex before. We examined the expression pattern of 39 subtracted clones, which was enriched in the upper layers of the cerebral cortex at embryonic stages. The expression of most clones is developmentally regulated, and especially high in embryonic and early postnatal stages. Four of the unknown clones were studied in more detail and identified as a new member of the tetraspanin superfamily, a putative RNA binding protein, a specific product of the adult dentate gyrus and a protein containing a beta-catenin repeat. We thus cloned a collection of subtracted cDNAs coding for protein products that may be involved in the development of the cerebral cortex.
Asunto(s)
Diferenciación Celular/genética , Movimiento Celular/genética , Corteza Cerebral/embriología , ADN Complementario/genética , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Secuencia de Bases , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , ADN Complementario/aislamiento & purificación , Giro Dentado/citología , Giro Dentado/embriología , Giro Dentado/metabolismo , Femenino , Feto , Biblioteca Genómica , Sustancias de Crecimiento/genética , Sustancias de Crecimiento/aislamiento & purificación , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/aislamiento & purificación , Neuronas/citología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/aislamiento & purificación , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido NucleicoRESUMEN
Genetic variation in neuregulin and its ErbB4 receptor has been linked to schizophrenia, although little is known about how they contribute to the disease process. Here, we have examined conditional Erbb4 mouse mutants to study how disruption of specific inhibitory circuits in the cerebral cortex may cause large-scale functional deficits. We found that deletion of ErbB4 from the two main classes of fast-spiking interneurons, chandelier and basket cells, causes relatively subtle but consistent synaptic defects. Surprisingly, these relatively small wiring abnormalities boost cortical excitability, increase oscillatory activity, and disrupt synchrony across cortical regions. These functional deficits are associated with increased locomotor activity, abnormal emotional responses, and impaired social behavior and cognitive function. Our results reinforce the view that dysfunction of cortical fast-spiking interneurons might be central to the pathophysiology of schizophrenia.
Asunto(s)
Potenciales de Acción/genética , Encéfalo/patología , Receptores ErbB/deficiencia , Interneuronas/fisiología , Fenotipo , Esquizofrenia , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Encéfalo/fisiopatología , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/genética , Modelos Animales de Enfermedad , Electroporación , Receptores ErbB/genética , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Proteínas con Homeodominio LIM/genética , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Actividad Motora/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Parvalbúminas/metabolismo , Técnicas de Placa-Clamp , Proteínas/genética , Proteínas/metabolismo , ARN no Traducido , Receptor ErbB-4 , Receptores de GABA-A/metabolismo , Esquizofrenia/complicaciones , Esquizofrenia/genética , Esquizofrenia/patología , Conducta Social , Estadística como Asunto , Transmisión Sináptica/genética , Factores de Transcripción/genéticaRESUMEN
Neurogenesis relies on a delicate balance between progenitor maintenance and neuronal production. Progenitors divide symmetrically to increase the pool of dividing cells. Subsequently, they divide asymmetrically to self-renew and produce new neurons or, in some brain regions, intermediate progenitor cells (IPCs). Here we report that central nervous system progenitors express Robo1 and Robo2, receptors for Slit proteins that regulate axon guidance, and that absence of these receptors or their ligands leads to loss of ventricular mitoses. Conversely, production of IPCs is enhanced in Robo1/2 and Slit1/2 mutants, suggesting that Slit/Robo signaling modulates the transition between primary and intermediate progenitors. Unexpectedly, these defects do not lead to transient overproduction of neurons, probably because supernumerary IPCs fail to detach from the ventricular lining and cycle very slowly. At the molecular level, the role of Slit/Robo in progenitor cells involves transcriptional activation of the Notch effector Hes1. These findings demonstrate that Robo signaling modulates progenitor cell dynamics in the developing brain.
Asunto(s)
Proliferación Celular , Sistema Nervioso Central/citología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Inmunológicos/metabolismo , Transducción de Señal/fisiología , Células Madre/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cadherinas/metabolismo , Recuento de Células , Ciclo Celular/genética , Células Cultivadas , Sistema Nervioso Central/embriología , Distribución de Chi-Cuadrado , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Neocórtex/citología , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Neurogénesis , Neuronas/fisiología , Receptores Inmunológicos/deficiencia , Transducción de Señal/genética , Factor de Transcripción HES-1 , Transfección , Proteínas RoundaboutRESUMEN
Cell migration is the consequence of the sum of positive and negative regulatory mechanisms. Although appropriate migration of neurons is a principal feature of brain development, the negative regulatory mechanisms remain obscure. We found that JNK1 was highly active in developing cortex and that selective inhibition of JNK in the cytoplasm markedly increased both the frequency of exit from the multipolar stage and radial migration rate and ultimately led to an ill-defined cellular organization. Moreover, regulation of multipolar-stage exit and radial migration in Jnk1(-/-) (also known as Mapk8) mice, resulted from consequential changes in phosphorylation of the microtubule regulator SCG10 (also called stathmin-2). Expression of an SCG10 mutant that mimics the JNK1-phosphorylated form restored normal migration in the brains of Jnk1(-/-) mouse embryos. These findings indicate that the phosphorylation of SCG10 by JNK1 is a fundamental mechanism that governs the transition from the multipolar stage and the rate of neuronal cell movement during cortical development.
Asunto(s)
Movimiento Celular/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas/fisiología , Animales , Proteínas de Unión al Calcio , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Noqueados , Proteína Quinasa 8 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Estatmina , Tubulina (Proteína)/metabolismoRESUMEN
Axons of retinal ganglion cells (RGCs) make a divergent choice at the optic chiasm to cross or avoid the midline in order to project to ipsilateral and contralateral targets, thereby establishing the binocular visual pathway. The zinc-finger transcription factor Zic2 and a member of the Eph family of receptor tyrosine kinases, EphB1, are both essential for proper development of the ipsilateral projection at the mammalian optic chiasm midline. Here, we demonstrate in mouse by functional experiments in vivo that Zic2 is not only required but is also sufficient to change the trajectory of RGC axons from crossed to uncrossed. In addition, our results reveal that this transcription factor regulates the expression of EphB1 in RGCs and also suggest the existence of an additional EphB1-independent pathway controlled by Zic2 that contributes to retinal axon divergence at the midline.