Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Genet ; 17(2): e1009026, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33621240

RESUMEN

Regulation of the plant immune system is important for controlling the specificity and amplitude of responses to pathogens and in preventing growth-inhibiting autoimmunity that leads to reductions in plant fitness. In previous work, we reported that SRFR1, a negative regulator of effector-triggered immunity, interacts with SNC1 and EDS1. When SRFR1 is non-functional in the Arabidopsis accession Col-0, SNC1 levels increase, causing a cascade of events that lead to autoimmunity phenotypes. Previous work showed that some members of the transcriptional co-repressor family TOPLESS interact with SNC1 to repress negative regulators of immunity. Therefore, to explore potential connections between SRFR1 and TOPLESS family members, we took a genetic approach that examined the effect of each TOPLESS member in the srfr1 mutant background. The data indicated that an additive genetic interaction exists between SRFR1 and two members of the TOPLESS family, TPR2 and TPR3, as demonstrated by increased stunting and elevated PR2 expression in srfr1 tpr2 and srfr1 tpr2 tpr3 mutants. Furthermore, the tpr2 mutation intensifies autoimmunity in the auto-active snc1-1 mutant, indicating a novel role of these TOPLESS family members in negatively regulating SNC1-dependent phenotypes. This negative regulation can also be reversed by overexpressing TPR2 in the srfr1 tpr2 background. Similar to TPR1 that positively regulates snc1-1 phenotypes by interacting with SNC1, we show here that TPR2 directly binds the N-terminal domain of SNC1. In addition, TPR2 interacts with TPR1 in vivo, suggesting that the opposite functions of TPR2 and TPR1 are based on titration of SNC1-TPR1 complexes by TPR2 or altered functions of a SNC1-TPR1-TPR2 complex. Thus, this work uncovers diverse functions of individual members of the TOPLESS family in Arabidopsis and provides evidence for the additive effect of transcriptional and post-transcriptional regulation of SNC1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Autoinmunidad/genética , Chaperonas Moleculares/metabolismo , Inmunidad de la Planta/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/inmunología , Chaperonas Moleculares/genética , Mutación , Plantas Modificadas Genéticamente , Regulación hacia Arriba
2.
PLoS Pathog ; 14(3): e1006984, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29601603

RESUMEN

Bacterial effector proteins secreted into host plant cells manipulate those cells to the benefit of the pathogen, but effector-triggered immunity (ETI) occurs when effectors are recognized by host resistance proteins. The RPS4/RRS1 pair recognizes the Pseudomonas syringae pv. pisi effector AvrRps4. AvrRps4 is processed in planta into AvrRps4N (133 amino acids), homologous to the N-termini of other effectors including the native P. syringae pv. tomato strain DC3000 effector HopK1, and AvrRps4C (88 amino acids). Previous data suggested that AvrRps4C alone is necessary and sufficient for resistance when overexpressed in heterologous systems. We show that delivering AvrRps4C from DC3000, but not from a DC3000 hopK1- strain, triggers resistance in the Arabidopsis accession Col-0. Delivering AvrRps4C in tandem with AvrRps4N, or as a chimera with HopK1N, fully complements AvrRps4-triggered immunity. AvrRps4N in the absence of AvrRps4C enhances virulence in Col-0. In addition, AvrRps4N triggers a hypersensitive response in lettuce that is attenuated by coexpression of AvrRps4C, further supporting the role of AvrRps4N as a bona fide effector domain. Based on these results we propose that evolutionarily, fusion of AvrRps4C to AvrRps4N may have counteracted recognition of AvrRps4N, and that the plant RPS4/RRS1 resistance gene pair was selected as a countermeasure. We conclude that AvrRps4 represents an unusual chimeric effector, with recognition in Arabidopsis by RPS4/RRS1 requiring the presence of both processed effector moieties.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas Bacterianas/metabolismo , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/patogenicidad , Virulencia , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Enfermedades de las Plantas/inmunología
3.
Mol Plant Microbe Interact ; 32(5): 540-549, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30480481

RESUMEN

One layer of the innate immune system allows plants to recognize pathogen-associated molecular patterns (PAMPS), activating a defense response known as PAMP-triggered immunity (PTI). Maintaining an active immune response, however, comes at the cost of plant growth and development; accordingly, optimization of the balance between defense and development is critical to plant fitness. The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factor family consists of well-characterized transcriptional regulators of plant development and morphogenesis. The three closely related class I TCP transcription factors TCP8, TCP14, and TCP15 have also been implicated in the regulation of effector-triggered immunity, but there has been no previous characterization of PTI-related phenotypes. To identify TCP targets involved in PTI, we screened a PAMP-induced gene promoter library in a yeast one-hybrid assay and identified interactions of these three TCPs with the EF-Tu RECEPTOR (EFR) promoter. The direct interactions between TCP8 and EFR were confirmed to require an intact TCP binding site in planta. A tcp8 tcp14 tcp15 triple mutant was impaired in EFR-dependent PTI and exhibited reduced levels of PATHOGENESIS-RELATED PROTEIN 2 and induction of EFR expression after elicitation with elf18 but also increased production of reactive oxygen species relative to Col-0. Our data support an increasingly complex role for TCPs at the nexus of plant development and defense.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Inmunidad de la Planta , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Factor Tu de Elongación Peptídica/genética , Inmunidad de la Planta/genética , Factores de Transcripción/genética
4.
Semin Cell Dev Biol ; 56: 150-162, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27174437

RESUMEN

The plant immune system is a complex network of components that function together to sense the presence and activity of potential biotic threats, and integrate these signals into an appropriate output, namely the transcription of genes that activate an immune response that is commensurate with the perceived threat. Given the variety of biotic threats a plant must face the immune response must be plastic, but because an immune response is costly to the plant in terms of energy expenditure and development it must also be under tight control. To meet these needs transcriptional control is exercised at multiple levels. In this article we will review some of the latest developments in understanding how the plant immune response is regulated at the level of transcription. New roles are being discovered for the long-studied WRKY and TGA transcription factor families, while additional critical defense functions are being attributed to TCPs and other transcription factors. Dynamically controlling access to DNA through post-translational modification of histones is emerging as an essential component of priming, maintaining, attenuating, and repressing transcription in response to biotic stress. Unsurprisingly, the plant's transcriptional response is targeted by pathogen effectors, and in turn resistance proteins stand guard over and participate in transcriptional regulation. Together, these multiple layers lead to the observed complexity of the plant transcriptional immune response, with different transcription factors or chromatin components playing a prominent role depending on the plant-pathogen interaction being studied.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Inmunidad Innata/genética , Inmunidad de la Planta/genética , Animales , Histonas/metabolismo , Humanos , Factores de Transcripción/metabolismo
5.
J Fungi (Basel) ; 6(4)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291820

RESUMEN

Sporisorium scitamineum is a biotrophic fungus causing sugarcane smut disease. In this study, we set up a pipeline and used genomic and dual transcriptomic data previously obtained by our group to identify candidate effectors of S. scitamineum and their expression profiles in infected smut-resistant and susceptible sugarcane plants. The expression profile of different genes after infection in contrasting sugarcane genotypes assessed by RT-qPCR depended on the plant genotypes and disease progression. Three candidate effector genes expressed earlier only in resistant plants, four expressed in both genotypes, and three later in susceptible plants. Ten genes were cloned and transiently expressed in N. benthamiana leaves to determine their subcellular location, while four localized in more than one compartment. Two candidates, g3890 having a nucleoplasmic and mitochondrial location and g5159 targeting the plant cell wall, were selected to obtain their possible corresponding host targets using co-immunoprecipitation (CoIP) experiments and mass spectrometry. Various potential interactors were identified, including subunits of the protein phosphatase 2A and an endochitinase. We investigated the presence of orthologs in sugarcane and using transcriptome data present their expression profiles. Orthologs of sugarcane shared around 70% similarity. Identifying a set of putative fungal effectors and their plant targets provides a valuable resource for functional characterization of the molecular events leading to smut resistance in sugarcane plants and uncovers further opportunities for investigation.

6.
Front Plant Sci ; 4: 364, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-24062762

RESUMEN

The robustness of plant effector-triggered immunity is correlated with massive alterations of the host transcriptome. Yet the molecular mechanisms that cause and underlie this reprogramming remain obscure. Here we will review recent advances in deciphering nuclear functions of plant immune receptors and of associated proteins. Important open questions remain, such as the identities of the primary transcription factors involved in control of effector-triggered immune responses, and indeed whether this can be generalized or whether particular effector-resistance protein interactions impinge on distinct sectors in the transcriptional response web. Multiple lines of evidence have implicated WRKY transcription factors at the core of responses to microbe-associated molecular patterns and in intersections with effector-triggered immunity. Recent findings from yeast two-hybrid studies suggest that members of the TCP transcription factor family are targets of several effectors from diverse pathogens. Additional transcription factor families that are directly or indirectly involved in effector-triggered immunity are likely to be identified.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA