RESUMEN
Autocrine and paracrine signaling regulating adipogenesis in white adipose tissue remains largely unclear. Here we used single-cell RNA-sequencing (RNA-seq) and single nuclei RNA-sequencing (snRNA-seq) to identify markers of adipose progenitor cells (APCs) and adipogenic modulators in visceral adipose tissue (VAT) of humans and mice. Our study confirmed the presence of major cellular clusters in humans and mice and established important sex and diet-specific dissimilarities in cell proportions. Here we show that bone morphogenetic protein (BMP)-binding endothelial regulator (BMPER) is a conserved marker for APCs and adipocytes in VAT in humans and mice. Further, BMPER is highly enriched in lineage negative stromal vascular cells and its expression is significantly higher in visceral compared to subcutaneous APCs in mice. BMPER expression and release peaked by day four post-differentiation in 3T3-L1 preadipocytes. We reveal that BMPER is required for adipogenesis both in 3T3-L1 preadipocytes and in mouse APCs. Together, this study identified BMPER as a positive modulator of adipogenesis.
Asunto(s)
Adipogénesis , Obesidad , Animales , Humanos , Ratones , Adipocitos , Adiposidad , Proteínas Portadoras , ARN Nuclear PequeñoRESUMEN
Emerging evidence suggests a significant functional role of adipose tissue in maintaining whole-body metabolic health. It is well established that obesity leads to compositional and morphological changes in adipose tissue that can contribute to the development of cardiometabolic disorders. Thus, the function and size of adipocytes as well as perfusion and inflammation can significantly impact health outcomes independent of body mass index. Lifestyle interventions such as exercise can improve metabolic homeostasis and reduce the risk for developing cardiometabolic disorders. Adipose tissue displays remarkable plasticity in response to external stimuli such as dietary intervention and exercise. Here we review systemic and local effects of exercise that modulate white and brown adipose tissue cellularity, metabolic function and remodeling in humans and animals.