Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 21(5): 809-813, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605111

RESUMEN

Neuroscience is advancing standardization and tool development to support rigor and transparency. Consequently, data pipeline complexity has increased, hindering FAIR (findable, accessible, interoperable and reusable) access. brainlife.io was developed to democratize neuroimaging research. The platform provides data standardization, management, visualization and processing and automatically tracks the provenance history of thousands of data objects. Here, brainlife.io is described and evaluated for validity, reliability, reproducibility, replicability and scientific utility using four data modalities and 3,200 participants.


Asunto(s)
Nube Computacional , Neurociencias , Neurociencias/métodos , Humanos , Neuroimagen/métodos , Reproducibilidad de los Resultados , Programas Informáticos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen
2.
Nat Methods ; 18(7): 775-778, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34155395

RESUMEN

Diffusion-weighted magnetic resonance imaging (dMRI) is the primary method for noninvasively studying the organization of white matter in the human brain. Here we introduce QSIPrep, an integrative software platform for the processing of diffusion images that is compatible with nearly all dMRI sampling schemes. Drawing on a diverse set of software suites to capitalize on their complementary strengths, QSIPrep facilitates the implementation of best practices for processing of diffusion images.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Programas Informáticos , Humanos , Lenguajes de Programación , Flujo de Trabajo
3.
Neuroimage ; 266: 119826, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36543265

RESUMEN

Quantitative diffusion MRI (dMRI) is a promising technique for evaluating the spinal cord in health and disease. However, low signal-to-noise ratio (SNR) can impede interpretation and quantification of these images. The purpose of this study is to evaluate several dMRI denoising approaches on their ability to improve the quality, reliability, and accuracy of quantitative diffusion MRI of the spinal cord. We evaluate three denoising approaches (Non-Local Means, Marchenko-Pastur PCA, and a newly proposed Patch2Self algorithm) and conduct five experiments to validate the denoising performance on clinical-quality and commonly-acquired dMRI acquisitions: 1) a phantom experiment to assess denoising error and bias; 2) a multi-vendor, multi-acquisition open experiment for both qualitative and quantitative evaluation of noise residuals; 3) a bootstrapping experiment to estimate uncertainty of parametric maps; 4) an assessment of spinal cord lesion conspicuity in a multiple sclerosis group; and 5) an evaluation of denoising for advanced parametric multi-compartment modeling. We find that all methods improve signal-to-noise ratio and conspicuity of MS lesions in individual diffusion weighted images (DWIs), but MPPCA and Patch2Self excel at improving the quality and intra-cord contrast of diffusion weighted images - removing signal fluctuations due to thermal noise while improving precision of estimation of diffusion parameters even with very few DWIs (i.e., 16-32) typical of clinical acquisitions. These denoising approaches hold promise for facilitating reliable diffusion observations and measurements in the spinal cord to investigate biological and pathological processes.


Asunto(s)
Médula Cervical , Humanos , Médula Cervical/diagnóstico por imagen , Reproducibilidad de los Resultados , Imagen de Difusión por Resonancia Magnética/métodos , Médula Espinal/diagnóstico por imagen , Relación Señal-Ruido , Algoritmos
4.
Neuroimage ; 249: 118830, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34965454

RESUMEN

Diffusion MRI (dMRI) provides invaluable information for the study of tissue microstructure and brain connectivity, but suffers from a range of imaging artifacts that greatly challenge the analysis of results and their interpretability if not appropriately accounted for. This review will cover dMRI artifacts and preprocessing steps, some of which have not typically been considered in existing pipelines or reviews, or have only gained attention in recent years: brain/skull extraction, B-matrix incompatibilities w.r.t the imaging data, signal drift, Gibbs ringing, noise distribution bias, denoising, between- and within-volumes motion, eddy currents, outliers, susceptibility distortions, EPI Nyquist ghosts, gradient deviations, B1 bias fields, and spatial normalization. The focus will be on "what's new" since the notable advances prior to and brought by the Human Connectome Project (HCP), as presented in the predecessing issue on "Mapping the Connectome" in 2013. In addition to the development of novel strategies for dMRI preprocessing, exciting progress has been made in the availability of open source tools and reproducible pipelines, databases and simulation tools for the evaluation of preprocessing steps, and automated quality control frameworks, amongst others. Finally, this review will consider practical considerations and our view on "what's next" in dMRI preprocessing.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética/normas , Imagen de Difusión por Resonancia Magnética/tendencias , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Imagen Asistido por Computador/normas , Procesamiento de Imagen Asistido por Computador/tendencias
6.
Neuroimage ; 240: 118367, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34237442

RESUMEN

Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal encodes specific properties of the underlying diffusion process. In the last two decades, several signal representations have been proposed to fit the dMRI signal and decode such properties. Most methods, however, are tested and developed on a limited amount of data, and their applicability to other acquisition schemes remains unknown. With this work, we aimed to shed light on the generalizability of existing dMRI signal representations to different diffusion encoding parameters and brain tissue types. To this end, we organized a community challenge - named MEMENTO, making available the same datasets for fair comparisons across algorithms and techniques. We considered two state-of-the-art diffusion datasets, including single-diffusion-encoding (SDE) spin-echo data from a human brain with over 3820 unique diffusion weightings (the MASSIVE dataset), and double (oscillating) diffusion encoding data (DDE/DODE) of a mouse brain including over 2520 unique data points. A subset of the data sampled in 5 different voxels was openly distributed, and the challenge participants were asked to predict the remaining part of the data. After one year, eight participant teams submitted a total of 80 signal fits. For each submission, we evaluated the mean squared error, the variance of the prediction error and the Bayesian information criteria. The received submissions predicted either multi-shell SDE data (37%) or DODE data (22%), followed by cartesian SDE data (19%) and DDE (18%). Most submissions predicted the signals measured with SDE remarkably well, with the exception of low and very strong diffusion weightings. The prediction of DDE and DODE data seemed more challenging, likely because none of the submissions explicitly accounted for diffusion time and frequency. Next to the choice of the model, decisions on fit procedure and hyperparameters play a major role in the prediction performance, highlighting the importance of optimizing and reporting such choices. This work is a community effort to highlight strength and limitations of the field at representing dMRI acquired with trending encoding schemes, gaining insights into how different models generalize to different tissue types and fiber configurations over a large range of diffusion encodings.


Asunto(s)
Encéfalo/diagnóstico por imagen , Bases de Datos Factuales , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Animales , Encéfalo/fisiología , Humanos , Ratones
7.
Magn Reson Med ; 86(6): 3304-3320, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34270123

RESUMEN

PURPOSE: Diffusion-weighted imaging allows investigators to identify structural, microstructural, and connectivity-based differences between subjects, but variability due to session and scanner biases is a challenge. METHODS: To investigate DWI variability, we present MASiVar, a multisite data set consisting of 319 diffusion scans acquired at 3 T from b = 1000 to 3000 s/mm2 across 14 healthy adults, 83 healthy children (5 to 8 years), three sites, and four scanners as a publicly available, preprocessed, and de-identified data set. With the adult data, we demonstrate the capacity of MASiVar to simultaneously quantify the intrasession, intersession, interscanner, and intersubject variability of four common DWI processing approaches: (1) a tensor signal representation, (2) a multi-compartment neurite orientation dispersion and density model, (3) white-matter bundle segmentation, and (4) structural connectomics. Respectively, we evaluate region-wise fractional anisotropy, mean diffusivity, and principal eigenvector; region-wise CSF volume fraction, intracellular volume fraction, and orientation dispersion index; bundle-wise shape, volume, fractional anisotropy, and length; and whole connectome correlation and maximized modularity, global efficiency, and characteristic path length. RESULTS: We plot the variability in these measures at each level and find that it consistently increases with intrasession to intersession to interscanner to intersubject effects across all processing approaches and that sometimes interscanner variability can approach intersubject variability. CONCLUSIONS: This study demonstrates the potential of MASiVar to more globally investigate DWI variability across multiple levels and processing approaches simultaneously and suggests harmonization between scanners for multisite analyses should be considered before inference of group differences on subjects.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Blanca , Adulto , Anisotropía , Encéfalo/diagnóstico por imagen , Niño , Imagen de Difusión por Resonancia Magnética , Humanos , Neuritas
8.
Neuroimage ; 170: 283-295, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28712994

RESUMEN

Virtual dissection of diffusion MRI tractograms is cumbersome and needs extensive knowledge of white matter anatomy. This virtual dissection often requires several inclusion and exclusion regions-of-interest that make it a process that is very hard to reproduce across experts. Having automated tools that can extract white matter bundles for tract-based studies of large numbers of people is of great interest for neuroscience and neurosurgical planning. The purpose of our proposed method, named RecoBundles, is to segment white matter bundles and make virtual dissection easier to perform. This can help explore large tractograms from multiple persons directly in their native space. RecoBundles leverages latest state-of-the-art streamline-based registration and clustering to recognize and extract bundles using prior bundle models. RecoBundles uses bundle models as shape priors for detecting similar streamlines and bundles in tractograms. RecoBundles is 100% streamline-based, is efficient to work with millions of streamlines and, most importantly, is robust and adaptive to incomplete data and bundles with missing components. It is also robust to pathological brains with tumors and deformations. We evaluated our results using multiple bundles and showed that RecoBundles is in good agreement with the neuroanatomical experts and generally produced more dense bundles. Across all the different experiments reported in this paper, RecoBundles was able to identify the core parts of the bundles, independently from tractography type (deterministic or probabilistic) or size. Thus, RecoBundles can be a valuable method for exploring tractograms and facilitating tractometry studies.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Neuroimagen/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Sustancia Blanca/diagnóstico por imagen , Simulación por Computador , Conjuntos de Datos como Asunto , Humanos
9.
Neuroimage ; 117: 124-40, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25987367

RESUMEN

The neuroscientific community today is very much interested in analyzing specific white matter bundles like the arcuate fasciculus, the corticospinal tract, or the recently discovered Aslant tract to study sex differences, lateralization and many other connectivity applications. For this reason, experts spend time manually segmenting these fascicles and bundles using streamlines obtained from diffusion MRI tractography. However, to date, there are very few computational tools available to register these fascicles directly so that they can be analyzed and their differences quantified across populations. In this paper, we introduce a novel, robust and efficient framework to align bundles of streamlines directly in the space of streamlines. We call this framework Streamline-based Linear Registration. We first show that this method can be used successfully to align individual bundles as well as whole brain streamlines. Additionally, if used as a piecewise linear registration across many bundles, we show that our novel method systematically provides higher overlap (Jaccard indices) than state-of-the-art nonlinear image-based registration in the white matter. We also show how our novel method can be used to create bundle-specific atlases in a straightforward manner and we give an example of a probabilistic atlas construction of the optic radiation. In summary, Streamline-based Linear Registration provides a solid registration framework for creating new methods to study the white matter and perform group-level tractometry analysis.


Asunto(s)
Encéfalo/anatomía & histología , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Fibras Nerviosas , Sustancia Blanca/anatomía & histología , Algoritmos , Humanos , Vías Nerviosas/anatomía & histología
10.
Commun Med (Lond) ; 4(1): 29, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396078

RESUMEN

BACKGROUND: Brain extraction is a computational necessity for researchers using brain imaging data. However, the complex structure of the interfaces between the brain, meninges and human skull have not allowed a highly robust solution to emerge. While previous methods have used machine learning with structural and geometric priors in mind, with the development of Deep Learning (DL), there has been an increase in Neural Network based methods. Most proposed DL models focus on improving the training data despite the clear gap between groups in the amount and quality of accessible training data between. METHODS: We propose an architecture we call Efficient V-net with Additional Conditional Random Field Layers (EVAC+). EVAC+ has 3 major characteristics: (1) a smart augmentation strategy that improves training efficiency, (2) a unique way of using a Conditional Random Fields Recurrent Layer that improves accuracy and (3) an additional loss function that fine-tunes the segmentation output. We compare our model to state-of-the-art non-DL and DL methods. RESULTS: Results show that even with limited training resources, EVAC+ outperforms in most cases, achieving a high and stable Dice Coefficient and Jaccard Index along with a desirable lower Surface (Hausdorff) Distance. More importantly, our approach accurately segmented clinical and pediatric data, despite the fact that the training dataset only contains healthy adults. CONCLUSIONS: Ultimately, our model provides a reliable way of accurately reducing segmentation errors in complex multi-tissue interfacing areas of the brain. We expect our method, which is publicly available and open-source, to be beneficial to a wide range of researchers.


Computational processing of brain images can enable better understanding and diagnosis of diseases that affect the brain. Brain Extraction is a computational method that can be used to remove areas of the head that are not the brain from images of the head. We compared various different computational methods that are available and used them to develop a better method. The method we describe in the paper is more accurate at imaging the brain of both healthy individuals and those known to have diseases that affect the brain than the other methods we evaluated. Our method might enable better understanding and diagnosis of diseases that affect the brain in the future.

11.
Neuroinformatics ; 22(2): 193-205, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38526701

RESUMEN

T1-weighted (T1w) MRI has low frequency intensity artifacts due to magnetic field inhomogeneities. Removal of these biases in T1w MRI images is a critical preprocessing step to ensure spatially consistent image interpretation. N4ITK bias field correction, the current state-of-the-art, is implemented in such a way that makes it difficult to port between different pipelines and workflows, thus making it hard to reimplement and reproduce results across local, cloud, and edge platforms. Moreover, N4ITK is opaque to optimization before and after its application, meaning that methodological development must work around the inhomogeneity correction step. Given the importance of bias fields correction in structural preprocessing and flexible implementation, we pursue a deep learning approximation / reinterpretation of the N4ITK bias fields correction to create a method which is portable, flexible, and fully differentiable. In this paper, we trained a deep learning network "DeepN4" on eight independent cohorts from 72 different scanners and age ranges with N4ITK-corrected T1w MRI and bias field for supervision in log space. We found that we can closely approximate N4ITK bias fields correction with naïve networks. We evaluate the peak signal to noise ratio (PSNR) in test dataset against the N4ITK corrected images. The median PSNR of corrected images between N4ITK and DeepN4 was 47.96 dB. In addition, we assess the DeepN4 model on eight additional external datasets and show the generalizability of the approach. This study establishes that incompatible N4ITK preprocessing steps can be closely approximated by naïve deep neural networks, facilitating more flexibility. All code and models are released at https://github.com/MASILab/DeepN4 .


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Redes Neurales de la Computación , Sesgo
12.
medRxiv ; 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37503305

RESUMEN

Medical imaging has become a fascinating field with detailed visualizations of the body's internal environments. Although the field has grown fast and is sensitive to new technologies, it does not use the latest rendering techniques available in other domains, such as day-to-day movie production or game development. In this work, we bring forward Horizon, a new engine that provides cinematic rendering capabilities in real-time for quality controlling medical data. In addition, Horizon is provided as free, open-source software to be used as a foundation stone for building the next generation of medical imaging applications. In this introductory paper, we focus on the extensive development of advanced shaders, which can be used to highlight untapped features of the data and allow fast interaction with machine learning algorithms. In addition, Horizon provides physically-based rendering capabilities, the epitome of advanced visualization, adapted for the needs of medical imaging analysis practices.

13.
bioRxiv ; 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36711974

RESUMEN

Nonlinear registration plays a central role in most neuroimage analysis methods and pipelines, such as in tractography-based individual and group-level analysis methods. However, nonlinear registration is a non-trivial task, especially when dealing with tractography data that digitally represent the underlying anatomy of the brain's white matter. Furthermore, such process often changes the structure of the data, causing artifacts that can suppress the underlying anatomical and structural details. In this paper, we introduce BundleWarp, a novel and robust streamline-based nonlinear registration method for the registration of white matter tracts. BundleWarp intelligently warps two bundles while preserving the bundles' crucial topological features. BundleWarp has two main steps. The first step involves the solution of an assignment problem that matches corresponding streamlines from the two bundles (iterLAP step). The second step introduces streamline-specific point-based deformations while keeping the topology of the bundle intact (mlCPD step). We provide comparisons against streamline-based linear registration and image-based nonlinear registration methods. BundleWarp quantitatively and qualitatively outperforms both, and we show that BundleWarp can deform and, at the same time, preserve important characteristics of the original anatomical shape of the bundles. Results are shown on 1,728 pairs of bundle registrations across 27 different bundle types. In addition, we present an application of BundleWarp for quantifying bundle shape differences using the generated deformation fields.

14.
Res Sq ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38014176

RESUMEN

T1-weighted (T1w) MRI has low frequency intensity artifacts due to magnetic field inhomogeneities. Removal of these biases in T1w MRI images is a critical preprocessing step to ensure spatially consistent image interpretation. N4ITK bias field correction, the current state-of-the-art, is implemented in such a way that makes it difficult to port between different pipelines and workflows, thus making it hard to reimplement and reproduce results across local, cloud, and edge platforms. Moreover, N4ITK is opaque to optimization before and after its application, meaning that methodological development must work around the inhomogeneity correction step. Given the importance of bias fields correction in structural preprocessing and flexible implementation, we pursue a deep learning approximation / reinterpretation of the N4ITK bias fields correction to create a method which is portable, flexible, and fully differentiable. In this paper, we trained a deep learning network "DeepN4" on eight independent cohorts from 72 different scanners and age ranges with N4ITK-corrected T1w MRI and bias field for supervision in log space. We found that we can closely approximate N4ITK bias fields correction with naïve networks. We evaluate the peak signal to noise ratio (PSNR) in test dataset against the N4ITK corrected images. The median PSNR of corrected images between N4ITK and DeepN4 was 47.96 dB. In addition, we assess the DeepN4 model on eight additional external datasets and show the generalizability of the approach. This study establishes that incompatible N4ITK preprocessing steps can be closely approximated by naïve deep neural networks, facilitating more flexibility. All code and models are released at https://github.com/MASILab/DeepN4.

15.
ArXiv ; 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37332566

RESUMEN

Neuroscience research has expanded dramatically over the past 30 years by advancing standardization and tool development to support rigor and transparency. Consequently, the complexity of the data pipeline has also increased, hindering access to FAIR data analysis to portions of the worldwide research community. brainlife.io was developed to reduce these burdens and democratize modern neuroscience research across institutions and career levels. Using community software and hardware infrastructure, the platform provides open-source data standardization, management, visualization, and processing and simplifies the data pipeline. brainlife.io automatically tracks the provenance history of thousands of data objects, supporting simplicity, efficiency, and transparency in neuroscience research. Here brainlife.io's technology and data services are described and evaluated for validity, reliability, reproducibility, replicability, and scientific utility. Using data from 4 modalities and 3,200 participants, we demonstrate that brainlife.io's services produce outputs that adhere to best practices in modern neuroscience research.

16.
Neuroinformatics ; 20(4): 1093-1104, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35716314

RESUMEN

In this work, a hierarchical search algorithm is proposed to efficiently compute the distance between similar tractography streamlines. This hierarchical framework offers an upper bound and a lower bound for the point-wise distance between two streamlines, which guarantees the validity of a proximity search. The proposed streamline representation enables the use of space-partitioning search trees to increase the tractography clustering speed without reducing its accuracy. The resulting approach enables a fast reconstruction a sparse distance matrix between two sets of streamlines, for all similar streamlines within a given radius. Alongside a white matter atlas, this fast streamline search can be used for accurate and reproducible tractogram clustering.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Sustancia Blanca , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Sustancia Blanca/diagnóstico por imagen , Algoritmos
17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 5055-5061, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36085780

RESUMEN

Whole-brain tractograms generated from diffusion MRI digitally represent the white matter structure of the brain and are composed of millions of streamlines. Such tractograms can have false positive and anatomically implausible streamlines. To obtain anatomically relevant streamlines and tracts, supervised and unsupervised methods can be used for tractogram clustering and tract extraction. Here we propose FiberNeat, an unsupervised white matter tract filtering method. FiberNeat takes an input set of streamlines that could either be unlabeled clusters or labeled tracts. Individual clusters/tracts are projected into a latent space using nonlinear dimensionality reduction techniques, t-SNE and UMAP, to find spurious and outlier streamlines. In addition, outlier streamline clusters are detected using DBSCAN and then removed from the data in streamline space. We performed quantitative comparisons with expertly delineated tracts. We ran FiberNeat on 131 participants' data from the ADNI3 dataset. We show that applying FiberNeat as a filtering step after bundle segmentation improves the quality of extracted tracts and helps improve tractometry.


Asunto(s)
Procedimientos de Cirugía Plástica , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Análisis por Conglomerados , Imagen de Difusión por Resonancia Magnética , Humanos , Sustancia Blanca/diagnóstico por imagen
18.
Med Phys ; 49(4): 2502-2513, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35090192

RESUMEN

PURPOSE: Mapping brain white matter (WM) is essential for building an understanding of brain anatomy and function. Tractography-based methods derived from diffusion-weighted MRI (dMRI) are the principal tools for investigating WM. These procedures rely on time-consuming dMRI acquisitions that may not always be available, especially for legacy or time-constrained studies. To address this problem, we aim to generate WM tracts from structural magnetic resonance imaging (MRI) image by deep learning. METHODS: Following recently proposed innovations in structural anatomical segmentation, we evaluate the feasibility of training multiply spatial localized convolution neural networks to learn context from fixed spatial patches from structural MRI on standard template. We focus on six widely used dMRI tractography algorithms (TractSeg, RecoBundles, XTRACT, Tracula, automated fiber quantification (AFQ), and AFQclipped) and train 125 U-Net models to learn these techniques from 3870 T1-weighted images from the Baltimore Longitudinal Study of Aging, the Human Connectome Project S1200 release, and scans acquired at Vanderbilt University. RESULTS: The proposed framework identifies fiber bundles with high agreement against tractography-based pathways with a median Dice coefficient from 0.62 to 0.87 on a test cohort, achieving improved subject-specific accuracy when compared to population atlas-based methods. We demonstrate the generalizability of the proposed framework on three externally available datasets. CONCLUSIONS: We show that patch-wise convolutional neural network can achieve robust bundle segmentation from T1w. We envision the use of this framework for visualizing the expected course of WM pathways when dMRI is not available.


Asunto(s)
Sustancia Blanca , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Estudios Longitudinales , Imagen por Resonancia Magnética , Sustancia Blanca/diagnóstico por imagen
19.
J Neurosci Methods ; 347: 108951, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33017644

RESUMEN

Diffusion MRI is a non-invasive technique to study brain microstructure. Differences in the microstructural properties of tissue, including size and anisotropy, can be represented in the signal if the appropriate method of acquisition is used. However, to depict the underlying properties, special care must be taken when designing the acquisition protocol as any changes in the procedure might impact on quantitative measurements. This work reviews state-of-the-art methods for studying brain microstructure using diffusion MRI and their sensitivity to microstructural differences and various experimental factors. Microstructural properties of the tissue at a micrometer scale can be linked to the diffusion signal at a millimeter-scale using modeling. In this paper, we first give an introduction to diffusion MRI and different encoding schemes. Then, signal representation-based methods and multi-compartment models are explained briefly. The sensitivity of the diffusion MRI signal to the microstructural components and the effects of curvedness of axonal trajectories on the diffusion signal are reviewed. Factors that impact on the quality (accuracy and precision) of derived metrics are then reviewed, including the impact of random noise, and variations in the acquisition parameters (i.e., number of sampled signals, b-value and number of acquisition shells). Finally, yet importantly, typical approaches to deal with experimental factors are depicted, including unbiased measures and harmonization. We conclude the review with some future directions and recommendations on this topic.


Asunto(s)
Encéfalo , Imagen de Difusión por Resonancia Magnética , Anisotropía , Axones , Encéfalo/diagnóstico por imagen , Difusión
20.
Front Neurosci ; 15: 779025, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975382

RESUMEN

In this work, we shed light on the issue of estimating Intravoxel Incoherent Motion (IVIM) for diffusion and perfusion estimation by characterizing the objective function using simplicial homology tools. We provide a robust solution via topological optimization of this model so that the estimates are more reliable and accurate. Estimating the tissue microstructure from diffusion MRI is in itself an ill-posed and a non-linear inverse problem. Using variable projection functional (VarPro) to fit the standard bi-exponential IVIM model we perform the optimization using simplicial homology based global optimization to better understand the topology of objective function surface. We theoretically show how the proposed methodology can recover the model parameters more accurately and consistently by casting it in a reduced subspace given by VarPro. Additionally we demonstrate that the IVIM model parameters cannot be accurately reconstructed using conventional numerical optimization methods due to the presence of infinite solutions in subspaces. The proposed method helps uncover multiple global minima by analyzing the local geometry of the model enabling the generation of reliable estimates of model parameters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA