Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Commun Biol ; 4(1): 61, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420340

RESUMEN

Alzheimer's Disease (AD) is a devastating neurodegenerative disorder without a cure. Here we show that mitochondrial respiratory chain complex I is an important small molecule druggable target in AD. Partial inhibition of complex I triggers the AMP-activated protein kinase-dependent signaling network leading to neuroprotection in symptomatic APP/PS1 female mice, a translational model of AD. Treatment of symptomatic APP/PS1 mice with complex I inhibitor improved energy homeostasis, synaptic activity, long-term potentiation, dendritic spine maturation, cognitive function and proteostasis, and reduced oxidative stress and inflammation in brain and periphery, ultimately blocking the ongoing neurodegeneration. Therapeutic efficacy in vivo was monitored using translational biomarkers FDG-PET, 31P NMR, and metabolomics. Cross-validation of the mouse and the human transcriptomic data from the NIH Accelerating Medicines Partnership-AD database demonstrated that pathways improved by the treatment in APP/PS1 mice, including the immune system response and neurotransmission, represent mechanisms essential for therapeutic efficacy in AD patients.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Cognición/efectos de los fármacos , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Pironas/uso terapéutico , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/ultraestructura , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroprotección , Prueba de Estudio Conceptual , Pironas/farmacología , Transducción de Señal/efectos de los fármacos
3.
Sci Rep ; 6: 18725, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26729583

RESUMEN

Altered brain metabolism is associated with progression of Alzheimer's Disease (AD). Mitochondria respond to bioenergetic changes by continuous fission and fusion. To account for three dimensional architecture of the brain tissue and organelles, we applied 3-dimensional electron microscopy (3D EM) reconstruction to visualize mitochondrial structure in the brain tissue from patients and mouse models of AD. We identified a previously unknown mitochondrial fission arrest phenotype that results in elongated interconnected organelles, "mitochondria-on-a-string" (MOAS). Our data suggest that MOAS formation may occur at the final stages of fission process and was not associated with altered translocation of activated dynamin related protein 1 (Drp1) to mitochondria but with reduced GTPase activity. Since MOAS formation was also observed in the brain tissue of wild-type mice in response to hypoxia or during chronological aging, fission arrest may represent fundamental compensatory adaptation to bioenergetic stress providing protection against mitophagy that may preserve residual mitochondrial function. The discovery of novel mitochondrial phenotype that occurs in the brain tissue in response to energetic stress accurately detected only using 3D EM reconstruction argues for a major role of mitochondrial dynamics in regulating neuronal survival.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Metabolismo Energético , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/patología , Encéfalo/ultraestructura , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/ultraestructura , Modelos Animales de Enfermedad , Dinaminas/metabolismo , Hipoxia/metabolismo , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/ultraestructura , Fenotipo , Fosforilación
4.
EBioMedicine ; 2(4): 294-305, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26086035

RESUMEN

Development of therapeutic strategies to prevent Alzheimer's Disease (AD) is of great importance. We show that mild inhibition of mitochondrial complex I with small molecule CP2 reduces levels of amyloid beta and phospho-Tau and averts cognitive decline in three animal models of familial AD. Low-mass molecular dynamics simulations and biochemical studies confirmed that CP2 competes with flavin mononucleotide for binding to the redox center of complex I leading to elevated AMP/ATP ratio and activation of AMP-activated protein kinase in neurons and mouse brain without inducing oxidative damage or inflammation. Furthermore, modulation of complex I activity augmented mitochondrial bioenergetics increasing coupling efficiency of respiratory chain and neuronal resistance to stress. Concomitant reduction of glycogen synthase kinase 3ß activity and restoration of axonal trafficking resulted in elevated levels of neurotrophic factors and synaptic proteins in adult AD mice. Our results suggest metabolic reprogramming induced by modulation of mitochondrial complex I activity represents promising therapeutic strategy for AD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA