Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Appl Genet ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066953

RESUMEN

The present investigation was taken up to study the G × E interaction and stability in 14 sugarcane clones during 2020-2021 and 2021-2022 at four different locations namely Pantnagar, Kashipur, Dhanauri (Haridwar), and Dhakrani (Dehradun) for cane yield (CY) and sugar yield (SY) at the 10-month and 12-month stages. The research aimed to identify stable, high-yielding sugarcane clones adaptable to diverse environmental conditions, enhancing productivity and profitability for farmers in Uttarakhand, India. The combined ANOVA revealed significant differences among the clones (22.20% to 29.54% variation), environments (35% to 39.62% variation), and their interactions (19.91% to 24.16% variation) for CY and SY at both stages. To analyze the stability of genotypes and G × E interactions, the GGE biplot method was employed. The first two PCs explained 77.94% for CY, 74.39% for SY at the 10-month stage, and 81.01% for SY at 12-month stage of the total variation of the GGE model. The GGE biplots revealed that for CY, the mega-environment exhibited CoPant 16222 and CoPant 16223 as the winning genotypes. For SY at the 10-month stage, CoPant 17221 and CoPant 16222 were the best clones in two different mega-environments, while at the 12-month stage, the mega-environment showed CoPant 16222 and CoPant 16223 as the winning genotypes. Dehradun (2020) and Kashipur (2020) were identified as the best test environments for selecting widely and specifically adapted genotypes, respectively, for CY and SY at the 10-month as well as 12-month stages. In a nutshell, GGE biplot analysis identified the best-performing sugarcane clones and best test environments in Uttarakhand, India. Clone CoPant 16222 showed high mean performance and stability for cane and sugar yield, making it suitable for recommendation to farmers.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38175411

RESUMEN

RNA interference (RNAi) is a conserved molecular mechanism that plays a critical role in post-transcriptional gene silencing across diverse organisms. This review delves into the role of RNAi in plant functional genomics and its applications in crop improvement, highlighting its mechanistic insights and practical implications. The review begins with the foundational discovery of RNAi's mechanism, tracing its origins from petunias to its widespread presence in various organisms. Various classes of regulatory non-coding small RNAs, including siRNAs, miRNAs, and phasiRNAs, have been uncovered, expanding the scope of RNAi-mediated gene regulation beyond conventional understanding. These RNA classes participate in intricate post-transcriptional and epigenetic processes that influence gene expression. In the context of crop enhancement, RNAi has emerged as a powerful tool for understanding gene functions. It has proven effective in deciphering gene roles related to stress resistance, metabolic pathways, and more. Additionally, RNAi-based approaches hold promise for integrated pest management and sustainable agriculture, contributing to global efforts in food security. This review discusses RNAi's diverse applications, such as modifying plant architecture, extending shelf life, and enhancing nutritional content in crops. The challenges and future prospects of RNAi technology, including delivery methods and biosafety concerns, are also explored. The global landscape of RNAi research is highlighted, with significant contributions from regions such as China, Europe, and North America. In conclusion, RNAi remains a versatile and pivotal tool in modern plant research, offering novel avenues for understanding gene functions and improving crop traits. Its integration with other biotechnological approaches such as gene editing holds the potential to shape the future of agriculture and sustainable food production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA