Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Br J Pharmacol ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39327688

RESUMEN

BACKGROUND AND PURPOSE: The pharmacology of flavonoids on ß-cell function is largely undefined especially in the context of defective secretion of insulin. We sought to identify flavonoids that increased the insulin-secreting function of ß-cells and to explore the underlying mechanisms. EXPERIMENTAL APPROACH: INS-1 ß-cells in culture and islets of Langerhans isolated from control and diabetic male rats were used for insulin secretion experiments. Pharmacological and electrophysiological approaches were used for mechanistic studies. KEY RESULTS: Among a set of flavonoids, exposure of INS-1 ß-cells to resokaempferol (ResoK) enhanced glucose-stimulated insulin secretion and therefore we further characterised its activity and its pharmacological mechanism. ResoK glucose-dependently enhanced insulin secretion in INS-1 ß-cells and pancreatic islets isolated from rats. Mechanistically, whole cell patch clamp recordings in INS-1 cells showed that ResoK rapidly and dose-dependently enhanced the L-type Ca2+ current whereas it was inactive towards T-type Ca2+ current. Accordingly, pharmacological inhibition of L-type Ca2+ current but not T-type Ca2+ current blocked the effects of ResoK on glucose-stimulated insulin secretion. ResoK was still active on dysfunctional ß-cells as it ameliorated glucose-stimulated insulin secretion in glucotoxicity-induced dysfunctional INS-1 cells and in pancreatic islets isolated from diabetic rats. CONCLUSION AND IMPLICATIONS: ResoK is a glucose-dependent activator of insulin secretion. Our results indicated that the effects of ResoK on insulin secretion involved its capacity to stimulate L-type Ca2+ currents in cultured ß-cells. As ResoK was also effective on dysfunctional ß-cells, our work provides a new approach to stimulating insulin secretion, using compounds based on the structure of ResoK.

2.
Fundam Clin Pharmacol ; 36(2): 375-377, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34449915

RESUMEN

The hormone ghrelin is the endogenous agonist of the G protein-coupled receptor (GPCR) termed growth hormone secretagogue receptor (GHSR). Ghrelin inhibits glucose-stimulated insulin secretion by activating pancreatic GHSR. Recently, Liver-Expressed Antimicrobial Peptide 2 (LEAP2) was recognized as an endogenous GHSR ligand that blocks ghrelin-induced actions. Nonetheless, the effect of LEAP2 on glucose-stimulated insulin secretion from pancreatic islets is unknown. We aimed at exploring the activity of LEAP2 on glucose-stimulated insulin secretion. Islets of Langerhans isolated from rat pancreas were exposed to glucose in the presence or in the absence of LEAP2 and ghrelin and then insulin secretion was assayed. LEAP2 did not modulate glucose-stimulated insulin secretion. However, LEAP2 blocked the insulinostatic action of ghrelin. Our data show that LEAP2 behaves as an antagonist of pancreatic GHSR.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Ghrelina , Insulina , Islotes Pancreáticos , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Ghrelina/metabolismo , Ghrelina/farmacología , Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Hígado , Ratas , Receptores de Ghrelina/metabolismo
3.
Br J Pharmacol ; 176(20): 4065-4078, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31378934

RESUMEN

BACKGROUND AND PURPOSE: The pharmacology of polyphenol metabolites on beta-cell function is largely undetermined. We sought to identify polyphenol metabolites that enhance the insulin-secreting function of beta-cells and to explore the underlying mechanisms. EXPERIMENTAL APPROACH: INS-1 beta-cells and rat isolated islets of Langerhans or perfused pancreas preparations were used for insulin secretion experiments. Molecular modelling, intracellular Ca2+ monitoring, and whole-cell patch-clamp recordings were used for mechanistic studies. KEY RESULTS: Among a set of polyphenol metabolites, we found that exposure of INS-1 beta-cells to urolithins A and C enhanced glucose-stimulated insulin secretion. We further characterized the activity of urolithin C and its pharmacological mechanism. Urolithin C glucose-dependently enhanced insulin secretion in isolated islets of Langerhans and perfused pancreas preparations. In the latter, enhancement was reversible when glucose was lowered from a stimulating to a non-stimulating concentration. Molecular modelling suggested that urolithin C could dock into the Cav 1.2 L-type Ca2+ channel. Calcium monitoring indicated that urolithin C had no effect on basal intracellular Ca2+ but enhanced depolarization-induced increase in intracellular Ca2+ in INS-1 cells and dispersed cells isolated from islets. Electrophysiology studies indicated that urolithin C dose-dependently enhanced the L-type Ca2+ current for levels of depolarization above threshold and shifted its voltage-dependent activation towards more negative potentials in INS-1 cells. CONCLUSION AND IMPLICATIONS: Urolithin C is a glucose-dependent activator of insulin secretion acting by facilitating L-type Ca2+ channel opening and Ca2+ influx into pancreatic beta-cells. Our work paves the way for the design of polyphenol metabolite-inspired compounds aimed at ameliorating beta-cell function.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Glucosa/metabolismo , Taninos Hidrolizables/metabolismo , Insulina/metabolismo , Animales , Línea Celular , Islotes Pancreáticos/metabolismo , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA