Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell ; 156(4): 800-11, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24529381

RESUMEN

Bacterial and viral mRNAs are often polycistronic. Akin to alternative splicing, alternative translation of polycistronic messages is a mechanism to generate protein diversity and regulate gene function. Although a few examples exist, the use of polycistronic messages in mammalian cells is not widely appreciated. Here we report an example of alternative translation as a means of regulating innate immune signaling. MAVS, a regulator of antiviral innate immunity, is expressed from a bicistronic mRNA encoding a second protein, miniMAVS. This truncated variant interferes with interferon production induced by full-length MAVS, whereas both proteins positively regulate cell death. To identify other polycistronic messages, we carried out genome-wide ribosomal profiling and identified a class of antiviral truncated variants. This study therefore reveals the existence of a functionally important bicistronic antiviral mRNA and suggests a widespread role for polycistronic mRNAs in the innate immune system.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Regulación de la Expresión Génica , Inmunidad Innata , Biosíntesis de Proteínas , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Muerte Celular , Humanos , Datos de Secuencia Molecular , Alineación de Secuencia , Transducción de Señal , Células U937
2.
Proc Biol Sci ; 286(1905): 20190726, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31238843

RESUMEN

Microplastics (less than 5 mm) are a recognized threat to aquatic food webs because they are ingested at multiple trophic levels and may bioaccumulate. In urban coastal environments, high densities of microplastics may disrupt nutritional intake. However, behavioural dynamics and consequences of microparticle ingestion are still poorly understood. As filter or suspension feeders, benthic marine invertebrates are vulnerable to microplastic ingestion. We explored microplastic ingestion by the temperate coral Astrangia poculata. We detected an average of over 100 microplastic particles per polyp in wild-captured colonies from Rhode Island. In the laboratory, corals were fed microbeads to characterize ingestion preference and retention of microplastics and consequences on feeding behaviour. Corals were fed biofilmed microplastics to test whether plastics serve as vectors for microbes. Ingested microplastics were apparent within the mesenterial tissues of the gastrovascular cavity. Corals preferred microplastic beads and declined subsequent offerings of brine shrimp eggs of the same diameter, suggesting that microplastic ingestion can inhibit food intake. The corals co-ingested Escherichia coli cells with microbeads. These findings detail specific mechanisms by which microplastics threaten corals, but also hint that the coral A. poculata, which has a large coastal range, may serve as a useful bioindicator and monitoring tool for microplastic pollution.


Asunto(s)
Antozoos/fisiología , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos , Cadena Alimentaria , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis
3.
Open Biol ; 12(10): 220146, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36196535

RESUMEN

Since the publication of the Janeway's Pattern Recognition hypothesis in 1989, study of pathogen-associated molecular patterns (PAMPs) and their immuno-stimulatory activities has accelerated. Most studies in this area have been conducted in model organisms, which leaves many open questions about the universality of PAMP biology across living systems. Mammals have evolved multiple proteins that operate as receptors for the PAMP lipopolysaccharide (LPS) from Gram-negative bacteria, but LPS is not immuno-stimulatory in all eukaryotes. In this review, we examine the history of LPS as a PAMP in mammals, recent data on LPS structure and its ability to activate mammalian innate immune receptors, and how these activities compare across commonly studied eukaryotes. We discuss why LPS may have evolved to be immuno-stimulatory in some eukaryotes but not others and propose two hypotheses about the evolution of PAMP structure based on the ecology and environmental context of the organism in question. Understanding PAMP structures and stimulatory mechanisms across multi-cellular life will provide insights into the evolutionary origins of innate immunity and may lead to the discovery of new PAMP variations of scientific and therapeutic interest.


Asunto(s)
Lipopolisacáridos , Moléculas de Patrón Molecular Asociado a Patógenos , Animales , Sistema Inmunológico/metabolismo , Inmunidad Innata , Mamíferos
4.
Sci Immunol ; 6(57)2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712473

RESUMEN

The assumption of near-universal bacterial detection by pattern recognition receptors is a foundation of immunology. The limits of this pattern recognition concept, however, remain undefined. As a test of this hypothesis, we determined whether mammalian cells can recognize bacteria that they have never had the natural opportunity to encounter. These bacteria were cultivated from the deep Pacific Ocean, where the genus Moritella was identified as a common constituent of the culturable microbiota. Most deep-sea bacteria contained cell wall lipopolysaccharide (LPS) structures that were expected to be immunostimulatory, and some deep-sea bacteria activated inflammatory responses from mammalian LPS receptors. However, LPS receptors were unable to detect 80% of deep-sea bacteria examined, with LPS acyl chain length being identified as a potential determinant of immunosilence. The inability of immune receptors to detect most bacteria from a different ecosystem suggests that pattern recognition strategies may be defined locally, not globally.


Asunto(s)
Interacciones Microbiota-Huesped , Microbiota , Receptores de Reconocimiento de Patrones/metabolismo , Agua de Mar/microbiología , Microbiología del Agua , Animales , Organismos Acuáticos/inmunología , Organismos Acuáticos/metabolismo , Biomarcadores , Línea Celular , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Humanos , Ratones , Océanos y Mares , Receptores de Reconocimiento de Patrones/genética , Especificidad de la Especie
5.
PLoS One ; 11(9): e0158772, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27690129

RESUMEN

Critical to the design and assessment of interventions for enteropathy and its developmental consequences in children living in impoverished conditions are non-invasive biomarkers that can detect intestinal damage and predict its effects on growth and development. We therefore assessed fecal, urinary and systemic biomarkers of enteropathy and growth predictors in 375 6-26 month-old children with varying degrees of malnutrition (stunting or wasting) in Northeast Brazil. 301 of these children returned for followup anthropometry after 2-6m. Biomarkers that correlated with stunting included plasma IgA anti-LPS and anti-FliC, zonulin (if >12m old), and intestinal FABP (I-FABP, suggesting prior barrier disruption); and with citrulline, tryptophan and with lower serum amyloid A (SAA) (suggesting impaired defenses). In contrast, subsequent growth was predicted in those with higher fecal MPO or A1AT and also by higher L/M, plasma LPS, I-FABP and SAA (showing intestinal barrier disruption and inflammation). Better growth was predicted in girls with higher plasma citrulline and in boys with higher plasma tryptophan. Interactions were also seen with fecal MPO and neopterin in predicting subsequent growth impairment. Biomarkers clustered into markers of 1) functional intestinal barrier disruption and translocation, 2) structural intestinal barrier disruption and inflammation and 3) systemic inflammation. Principle components pathway analyses also showed that L/M with %L, I-FABP and MPO associate with impaired growth, while also (like MPO) associating with a systemic inflammation cluster of kynurenine, LBP, sCD14, SAA and K/T. Systemic evidence of LPS translocation associated with stunting, while markers of barrier disruption or repair (A1AT and Reg1 with low zonulin) associated with fecal MPO and neopterin. We conclude that key noninvasive biomarkers of intestinal barrier disruption, LPS translocation and of intestinal and systemic inflammation can help elucidate how we recognize, understand, and assess effective interventions for enteropathy and its growth and developmental consequences in children in impoverished settings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA