Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Soft Matter ; 19(1): 31-43, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36472164

RESUMEN

Phagocytosis is the process of engulfment and internalization of comparatively large particles by cells, and plays a central role in the functioning of our immune system. We study the process of phagocytosis by considering a simplified coarse grained model of a three-dimensional vesicle, having a uniform adhesion interaction with a rigid particle, and containing curved membrane-bound protein complexes or curved membrane nano-domains, which in turn recruit active cytoskeletal forces. Complete engulfment is achieved when the bending energy cost of the vesicle is balanced by the gain in the adhesion energy. The presence of curved (convex) proteins reduces the bending energy cost by self-organizing with a higher density at the highly curved leading edge of the engulfing membrane, which forms the circular rim of the phagocytic cup that wraps around the particle. This allows the engulfment to occur at much smaller adhesion strength. When the curved membrane-bound protein complexes locally recruit actin polymerization machinery, which leads to outward forces being exerted on the membrane, we found that engulfment is achieved more quickly and at a lower protein density. We consider spherical and non-spherical particles and found that non-spherical particles are more difficult to engulf in comparison to the spherical particles of the same surface area. For non-spherical particles, the engulfment time crucially depends on the initial orientation of the particles with respect to the vesicle. Our model offers a mechanism for the spontaneous self-organization of the actin cytoskeleton at the phagocytic cup, in good agreement with recent high-resolution experimental observations.


Asunto(s)
Actinas , Proteínas de la Membrana , Actinas/metabolismo , Fagocitosis , Citoesqueleto/metabolismo , Modelos Teóricos
2.
Semin Cell Dev Biol ; 71: 30-41, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28851599

RESUMEN

The plasma membrane separates the interior of cells from the outside environment. The membrane tension, defined as the force per unit length acting on a cross-section of membrane, regulates many vital biological processes. In this review, we summarize the first historical findings and the latest advances, showing membrane tension as an important physical parameter in cell biology. We also discuss how this parameter must be better integrated and we propose experimental approaches for key unanswered questions.


Asunto(s)
Membrana Celular/fisiología , Animales , Fenómenos Fisiológicos Celulares , Homeostasis , Humanos , Membrana Dobles de Lípidos , Presión Osmótica
3.
J Hepatol ; 71(1): 130-142, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30878582

RESUMEN

BACKGROUND & AIMS: In vitro, cell function can be potently regulated by the mechanical properties of cells and of their microenvironment. Cells measure these features by developing forces via their actomyosin cytoskeleton, and respond accordingly by regulating intracellular pathways, including the transcriptional coactivators YAP/TAZ. Whether mechanical cues are relevant for in vivo regulation of adult organ homeostasis, and whether this occurs through YAP/TAZ, remains largely unaddressed. METHODS: We developed Capzb conditional knockout mice and obtained primary fibroblasts to characterize the role of CAPZ in vitro. In vivo functional analyses were carried out by inducing Capzb inactivation in adult hepatocytes, manipulating YAP/Hippo activity by hydrodynamic tail vein injections, and treating mice with the ROCK inhibitor, fasudil. RESULTS: We found that the F-actin capping protein CAPZ restrains actomyosin contractility: Capzb inactivation alters stress fiber and focal adhesion dynamics leading to enhanced myosin activity, increased traction forces, and increased liver stiffness. In vitro, this rescues YAP from inhibition by a small cellular geometry; in vivo, it induces YAP activation in parallel to the Hippo pathway, causing extensive hepatocyte proliferation and leading to striking organ overgrowth. Moreover, Capzb is required for the maintenance of the differentiated hepatocyte state, for metabolic zonation, and for gluconeogenesis. In keeping with changes in tissue mechanics, inhibition of the contractility regulator ROCK, or deletion of the Yap1 mechanotransducer, reverse the phenotypes emerging in Capzb-null livers. CONCLUSIONS: These results indicate a previously unsuspected role for CAPZ in tuning the mechanical properties of cells and tissues, which is required in hepatocytes for the maintenance of the differentiated state and to regulate organ size. More generally, it indicates for the first time that mechanotransduction has a physiological role in maintaining liver homeostasis in mammals. LAY SUMMARY: The mechanical properties of cells and tissues (i.e. whether they are soft or stiff) are thought to be important regulators of cell behavior. Herein, we found that inactivation of the protein CAPZ alters the mechanical properties of cells and liver tissues, leading to YAP hyperactivation. In turn, this profoundly alters liver physiology, causing organ overgrowth, defects in liver cell differentiation and metabolism. These results reveal a previously uncharacterized role for mechanical signals in the maintenance of adult liver homeostasis.


Asunto(s)
Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína CapZ/metabolismo , Proteínas de Ciclo Celular/metabolismo , Hepatocitos/fisiología , Hígado , Mecanotransducción Celular/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Células Cultivadas , Elasticidad , Vía de Señalización Hippo , Humanos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Hígado/fisiopatología , Ratones , Ratones Noqueados , Transducción de Señal , Proteínas Señalizadoras YAP
4.
J Cell Sci ; 130(1): 51-61, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27856508

RESUMEN

Biomimetic materials have long been the (he)art of bioengineering. They usually aim at mimicking in vivo conditions to allow in vitro culture, differentiation and expansion of cells. The past decade has witnessed a considerable amount of progress in soft lithography, bio-inspired micro-fabrication and biochemistry, allowing the design of sophisticated and physiologically relevant micro- and nano-environments. These systems now provide an exquisite toolbox with which we can control a large set of physicochemical environmental parameters that determine cell behavior. Bio-functionalized surfaces have evolved from simple protein-coated solid surfaces or cellular extracts into nano-textured 3D surfaces with controlled rheological and topographical properties. The mechanobiological molecular processes by which cells interact and sense their environment can now be unambiguously understood down to the single-molecule level. This Commentary highlights recent successful examples where bio-functionalized substrates have contributed in raising and answering new questions in the area of extracellular matrix sensing by cells, cell-cell adhesion and cell migration. The use, the availability, the impact and the challenges of such approaches in the field of biology are discussed.


Asunto(s)
Materiales Biomiméticos/farmacología , Señales (Psicología) , Ambiente , Animales , Comunicación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Humanos
5.
Proc Natl Acad Sci U S A ; 110(29): 11875-80, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23821745

RESUMEN

Phagocytes clear the body of undesirable particles such as infectious agents and debris. To extend pseudopods over the surface of targeted particles during engulfment, cells must change shape through extensive membrane and cytoskeleton remodeling. We observed that pseudopod extension occurred in two phases. In the first phase, pseudopods extended rapidly, with actin polymerization pushing the plasma membrane forward. The second phase occurred once the membrane area from preexisting reservoirs was depleted, leading to increased membrane tension. Increased tension directly altered the small Rho GTPase Rac1, 3'-phosphoinositide, and cytoskeletal organization. Furthermore, it activated exocytosis of vesicles containing GPI-anchored proteins, increasing membrane area and phagocytosis efficiency for large particles. We thus propose that, during phagocytosis, membrane remodeling, cytoskeletal organization, and biochemical signaling are orchestrated by the mechanical signal of membrane tension. These results put a simple mechanical signal at the heart of understanding immunological responses.


Asunto(s)
Actinas/metabolismo , Membrana Celular/inmunología , Fagocitosis/inmunología , Seudópodos/inmunología , Animales , Proteínas Bacterianas , Fenómenos Biomecánicos , Línea Celular Tumoral , Citoesqueleto/fisiología , Transferencia Resonante de Energía de Fluorescencia , Histidina/análogos & derivados , Histidina/metabolismo , Proteínas Luminiscentes , Ratones , Microscopía Confocal/métodos , Pinzas Ópticas , Proteína de Unión al GTP rac1/metabolismo
6.
Proc Natl Acad Sci U S A ; 110(15): E1361-70, 2013 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-23515331

RESUMEN

Focal adhesions are mechanosensitive elements that enable mechanical communication between cells and the extracellular matrix. Here, we demonstrate a major mechanosensitive pathway in which α-actinin triggers adhesion maturation by linking integrins to actin in nascent adhesions. We show that depletion of the focal adhesion protein α-actinin enhances force generation in initial adhesions on fibronectin, but impairs mechanotransduction in a subsequent step, preventing adhesion maturation. Expression of an α-actinin fragment containing the integrin binding domain, however, dramatically reduces force generation in depleted cells. This behavior can be explained by a competition between talin (which mediates initial adhesion and force generation) and α-actinin for integrin binding. Indeed, we show in an in vitro assay that talin and α-actinin compete for binding to ß3 integrins, but cooperate in binding to ß1 integrins. Consistently, we find opposite effects of α-actinin depletion and expression of mutants on substrates that bind ß3 integrins (fibronectin and vitronectin) versus substrates that only bind ß1 integrins (collagen). We thus suggest that nascent adhesions composed of ß3 integrins are initially linked to the actin cytoskeleton by talin, and then α-actinin competes with talin to bind ß3 integrins. Force transmitted through α-actinin then triggers adhesion maturation. Once adhesions have matured, α-actinin recruitment correlates with force generation, suggesting that α-actinin is the main link transmitting force between integrins and the cytoskeleton in mature adhesions. Such a multistep process enables cells to adjust forces on matrices, unveiling a role of α-actinin that is different from its well-studied function as an actin cross-linker.


Asunto(s)
Actinina/metabolismo , Matriz Extracelular/metabolismo , Integrina beta1/metabolismo , Integrina beta3/metabolismo , Animales , Adhesión Celular , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Ratones , Pinzas Ópticas , Estrés Mecánico , Talina/metabolismo
7.
Proc Natl Acad Sci U S A ; 109(27): 10891-6, 2012 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-22711834

RESUMEN

Fundamental biological processes such as morphogenesis and wound healing involve the closure of epithelial gaps. Epithelial gap closure is commonly attributed either to the purse-string contraction of an intercellular actomyosin cable or to active cell migration, but the relative contribution of these two mechanisms remains unknown. Here we present a model experiment to systematically study epithelial closure in the absence of cell injury. We developed a pillar stencil approach to create well-defined gaps in terms of size and shape within an epithelial cell monolayer. Upon pillar removal, cells actively respond to the newly accessible free space by extending lamellipodia and migrating into the gap. The decrease of gap area over time is strikingly linear and shows two different regimes depending on the size of the gap. In large gaps, closure is dominated by lamellipodium-mediated cell migration. By contrast, closure of gaps smaller than 20 µm was affected by cell density and progressed independently of Rac, myosin light chain kinase, and Rho kinase, suggesting a passive physical mechanism. By changing the shape of the gap, we observed that low-curvature areas favored the appearance of lamellipodia, promoting faster closure. Altogether, our results reveal that the closure of epithelial gaps in the absence of cell injury is governed by the collective migration of cells through the activation of lamellipodium protrusion.


Asunto(s)
Movimiento Celular/fisiología , Células Epiteliales/citología , Células Epiteliales/fisiología , Seudópodos/fisiología , Cicatrización de Heridas/fisiología , Actomiosina/fisiología , Animales , Recuento de Células , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Línea Celular , Perros , Uniones Intercelulares/fisiología , Riñón/citología , Quinasa de Cadena Ligera de Miosina/fisiología , Estrés Mecánico , Quinasas Asociadas a rho/fisiología
8.
EMBO J ; 29(6): 1055-68, 2010 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-20150894

RESUMEN

Extracellular matrices in vivo are heterogeneous structures containing gaps that cells bridge with an actomyosin network. To understand the basis of bridging, we plated cells on surfaces patterned with fibronectin (FN)-coated stripes separated by non-adhesive regions. Bridges developed large tensions where concave cell edges were anchored to FN by adhesion sites. Actomyosin complexes assembled near those sites (both actin and myosin filaments) and moved towards the centre of the non-adhesive regions in a treadmilling network. Inhibition of myosin-II (MII) or Rho-kinase collapsed bridges, whereas extension continued over adhesive areas. Inhibition of actin polymerization (latrunculin-A, jasplakinolide) also collapsed the actomyosin network. We suggest that MII has distinct functions at different bridge regions: (1) at the concave edges of bridges, MIIA force stimulates actin filament assembly at adhesions and (2) in the body of bridges, myosin cross-links actin filaments and stimulates actomyosin network healing when breaks occur. Both activities ensure turnover of actin networks needed to maintain stable bridges from one adhesive region to another.


Asunto(s)
Actomiosina/química , Contracción Muscular/fisiología , Actinas/metabolismo , Actomiosina/metabolismo , Citoesqueleto/metabolismo , Cinética , Miosinas/química , Miosinas/metabolismo , Quinasas Asociadas a rho/química , Quinasas Asociadas a rho/metabolismo
9.
Proc Natl Acad Sci U S A ; 108(35): 14467-72, 2011 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-21808040

RESUMEN

Cell migration and spreading involve the coordination of membrane trafficking, actomyosin contraction, and modifications to plasma membrane tension and area. The biochemical or biophysical basis for this coordination is however unknown. In this study, we show that during cell spreading, lamellipodia protrusion flattens plasma membrane folds and blebs and, once the plasma membrane area is depleted, there is a temporary increase in membrane tension by over twofold that is followed by activation of exocytosis and myosin contraction. Further, an artificial increase in plasma membrane tension stopped lamellipodia protrusion and activated an exocytotic burst. Subsequent decrease in tension restored spreading with activation of contraction. Conversely, blebbistatin inhibition of actomyosin contraction resulted in an even greater increase in plasma membrane tension and exocytosis activation. This spatiotemporal synchronization indicates that membrane tension is the signal that coordinates membrane trafficking, actomyosin contraction, and plasma membrane area change. We suggest that cells use plasma membrane tension as a global physical parameter to control cell motility.


Asunto(s)
Actomiosina/fisiología , Membrana Celular/metabolismo , Movimiento Celular , Exocitosis , Actinas/química , Animales , Membrana Celular/química , Células Cultivadas , Ratones , Estrés Mecánico
10.
Curr Opin Cell Biol ; 86: 102294, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38101114

RESUMEN

Over the past 25 years, membrane tension has emerged as a primary mechanical factor influencing cell behavior. Although supporting evidences are accumulating, the integration of this parameter in the lifecycle of cells, organs, and tissues is complex. The plasma membrane is envisioned as a bilayer continuum acting as a 2D fluid. However, it possesses almost infinite combinations of proteins, lipids, and glycans that establish interactions with the extracellular or intracellular environments. This results in a tridimensional composite material with non-trivial dynamics and physics, and the task of integrating membrane mechanics and cellular outcome is a daunting chore for biologists. In light of the most recent discoveries, we aim in this review to provide non-specialist readers some tips on how to solve this conundrum.


Asunto(s)
Mecanotransducción Celular , Proteínas , Mecanotransducción Celular/fisiología , Membrana Celular/fisiología
11.
Nat Commun ; 15(1): 5711, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977673

RESUMEN

The cell cortex is a dynamic assembly formed by the plasma membrane and underlying cytoskeleton. As the main determinant of cell shape, the cortex ensures its integrity during passive and active deformations by adapting cytoskeleton topologies through yet poorly understood mechanisms. The spectrin meshwork ensures such adaptation in erythrocytes and neurons by adopting different organizations. Erythrocytes rely on triangular-like lattices of spectrin tetramers, whereas in neurons they are organized in parallel, periodic arrays. Since spectrin is ubiquitously expressed, we exploited Expansion Microscopy to discover that, in fibroblasts, distinct meshwork densities co-exist. Through biophysical measurements and computational modeling, we show that the non-polarized spectrin meshwork, with the intervention of actomyosin, can dynamically transition into polarized clusters fenced by actin stress fibers that resemble periodic arrays as found in neurons. Clusters experience lower mechanical stress and turnover, despite displaying an extension close to the tetramer contour length. Our study sheds light on the adaptive properties of spectrin, which participates in the protection of the cell cortex by varying its densities in response to key mechanical features.


Asunto(s)
Espectrina , Espectrina/metabolismo , Animales , Fibroblastos/metabolismo , Actomiosina/metabolismo , Ratones , Citoesqueleto/metabolismo , Estrés Mecánico , Membrana Celular/metabolismo , Forma de la Célula , Actinas/metabolismo , Fibras de Estrés/metabolismo , Humanos
12.
Small Methods ; : e2400210, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747088

RESUMEN

Glioblastomas exhibit remarkable heterogeneity at various levels, including motility modes and mechanoproperties that contribute to tumor resistance and recurrence. In a recent study using gridded micropatterns mimicking the brain vasculature, glioblastoma cell motility modes, mechanical properties, formin content, and substrate chemistry are linked. Now is presented, SP2G (SPheroid SPreading on Grids), an analytic platform designed to identify the migratory modes of patient-derived glioblastoma cells and rapidly pinpoint the most invasive sub-populations. Tumorspheres are imaged as they spread on gridded micropatterns and analyzed by this semi-automated, open-source, Fiji macro suite that characterizes migration modes accurately. SP2G can reveal intra-patient motility heterogeneity with molecular correlations to specific integrins and EMT markers. This system presents a versatile and potentially pan-cancer workflow to detect diverse invasive tumor sub-populations in patient-derived specimens and offers a valuable tool for therapeutic evaluations at the individual patient level.

13.
Mol Cell Proteomics ; 10(10): M111.007930, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21719796

RESUMEN

Overexpression represents a principal bottleneck in structural and functional studies of integral membrane proteins (IMPs). Although E. coli remains the leading organism for convenient and economical protein overexpression, many IMPs exhibit toxicity on induction in this host and give low yields of properly folded protein. Different mechanisms related to membrane biogenesis and IMP folding have been proposed to contribute to these problems, but there is limited understanding of the physical and physiological constraints on IMP overexpression and folding in vivo. Therefore, we used a variety of genetic, genomic, and microscopy techniques to characterize the physiological responses of Escherichia coli MG1655 cells to overexpression of a set of soluble proteins and IMPs, including constructs exhibiting different levels of toxicity and producing different levels of properly folded versus misfolded product on induction. Genetic marker studies coupled with transcriptomic results indicate only minor perturbations in many of the physiological systems implicated in previous studies of IMP biogenesis. Overexpression of either IMPs or soluble proteins tends to block execution of the standard stationary-phase transcriptional program, although these effects are consistently stronger for the IMPs included in our study. However, these perturbations are not an impediment to successful protein overexpression. We present evidence that, at least for the target proteins included in our study, there is no inherent obstacle to IMP overexpression in E. coli at moderate levels suitable for structural studies and that the biochemical and conformational properties of the proteins themselves are the major obstacles to success. Toxicity associated with target protein activity produces selective pressure leading to preferential growth of cells harboring expression-reducing and inactivating mutations, which can produce chemical heterogeneity in the target protein population, potentially contributing to the difficulties encountered in IMP crystallization.


Asunto(s)
Proteínas de Escherichia coli/biosíntesis , Escherichia coli/crecimiento & desarrollo , Proteínas de la Membrana/biosíntesis , Análisis por Matrices de Proteínas/métodos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Vectores Genéticos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Pliegue de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Transcripción Genética
14.
bioRxiv ; 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36712133

RESUMEN

The cell cortex is a dynamic assembly that ensures cell integrity during passive deformation or active response by adapting cytoskeleton topologies with poorly understood mechanisms. The spectrin meshwork ensures such adaptation in erythrocytes and neurons. Erythrocytes rely on triangular-like lattices of spectrin tetramers, which in neurons are organized in periodic arrays. We exploited Expansion Microscopy to discover that these two distinct topologies can co-exist in other mammalian cells such as fibroblasts. We show through biophysical measurements and computational modeling that spectrin provides coverage of the cortex and, with the intervention of actomyosin, erythroid-like lattices can dynamically transition into condensates resembling neuron-like periodic arrays fenced by actin stress fibers. Spectrin condensates experience lower mechanical stress and turnover despite displaying an extension close to the contour length of the tetramer. Our study sheds light on the adaptive properties of spectrin, which ensures protection of the cortex by undergoing mechanically induced topological transitions.

15.
Nat Commun ; 14(1): 1432, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918565

RESUMEN

Phosphatidylinositol-5-phosphate (PtdIns5P)-4-kinases (PIP4Ks) are stress-regulated phosphoinositide kinases able to phosphorylate PtdIns5P to PtdIns(4,5)P2. In cancer patients their expression is typically associated with bad prognosis. Among the three PIP4K isoforms expressed in mammalian cells, PIP4K2B is the one with more prominent nuclear localisation. Here, we unveil the role of PIP4K2B as a mechanoresponsive enzyme. PIP4K2B protein level strongly decreases in cells growing on soft substrates. Its direct silencing or pharmacological inhibition, mimicking cell response to softness, triggers a concomitant reduction of the epigenetic regulator UHRF1 and induces changes in nuclear polarity, nuclear envelope tension and chromatin compaction. This substantial rewiring of the nucleus mechanical state drives YAP cytoplasmic retention and impairment of its activity as transcriptional regulator, finally leading to defects in cell spreading and motility. Since YAP signalling is essential for initiation and growth of human malignancies, our data suggest that potential therapeutic approaches targeting PIP4K2B could be beneficial in the control of the altered mechanical properties of cancer cells.


Asunto(s)
Heterocromatina , Neoplasias , Humanos , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Núcleo Celular/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Neoplasias/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Isoformas de Proteínas/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
16.
J Cell Sci ; 123(Pt 3): 413-23, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20067993

RESUMEN

Maintaining a physical connection across cytoplasm is crucial for many biological processes such as matrix force generation, cell motility, cell shape and tissue development. However, in the absence of stress fibers, the coherent structure that transmits force across the cytoplasm is not understood. We find that nonmuscle myosin-II (NMII) contraction of cytoplasmic actin filaments establishes a coherent cytoskeletal network irrespective of the nature of adhesive contacts. When NMII activity is inhibited during cell spreading by Rho kinase inhibition, blebbistatin, caldesmon overexpression or NMIIA RNAi, the symmetric traction forces are lost and cell spreading persists, causing cytoplasm fragmentation by membrane tension that results in 'C' or dendritic shapes. Moreover, local inactivation of NMII by chromophore-assisted laser inactivation causes local loss of coherence. Actin filament polymerization is also required for cytoplasmic coherence, but microtubules and intermediate filaments are dispensable. Loss of cytoplasmic coherence is accompanied by loss of circumferential actin bundles. We suggest that NMIIA creates a coherent actin network through the formation of circumferential actin bundles that mechanically link elements of the peripheral actin cytoskeleton where much of the force is generated during spreading.


Asunto(s)
Actinas/metabolismo , Citoesqueleto/metabolismo , Miosina Tipo IIA no Muscular/fisiología , Animales , Western Blotting , Células Cultivadas , Citoesqueleto/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Ratones , Células 3T3 NIH , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIA no Muscular/metabolismo , Quinasas Asociadas a rho/antagonistas & inhibidores
17.
Phys Rev Lett ; 109(7): 078103, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-23006405

RESUMEN

We study the formation of transportation networks of the true slime mold Physarum polycephalum after fragmentation by shear. Small fragments, called microplasmodia, fuse to form macroplasmodia in a percolation transition. At this topological phase transition, one single giant component forms, connecting most of the previously isolated microplasmodia. Employing the configuration model of graph theory for small link degree, we have found analytically an exact solution for the phase transition. It is generally applicable to percolation as seen, e.g., in vascular networks.


Asunto(s)
Modelos Teóricos , Physarum polycephalum/fisiología , Modelos Biológicos , Transición de Fase , Physarum polycephalum/citología , Physarum polycephalum/crecimiento & desarrollo
18.
J Cell Biol ; 177(2): 343-54, 2007 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-17438076

RESUMEN

Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are endocytosed by a clathrin- independent pathway into vesicles named GPI-AP-enriched early endosomal compartments (GEECs). We recently showed that the vacuolating toxin VacA secreted by Helicobacter pylori is endocytosed into the GEECs (Gauthier, N.C., P. Monzo, V. Kaddai, A. Doye, V. Ricci, and P. Boquet. 2005. Mol. Biol. Cell. 16:4852-4866). Unlike GPI-APs that are mostly recycled back to the plasma membrane, VacA reaches early endosomes (EEs) and then late endosomes (LEs), where vacuolation occurs. In this study, we used VacA to study the trafficking pathway between GEECs and LEs. We found that VacA routing from GEECs to LEs required polymerized actin. During this trafficking, VacA was transferred from GEECs to EEs associated with polymerized actin structures. The CD2-associated protein (CD2AP), a docking protein implicated in intracellular trafficking, bridged the filamentous actin (F-actin) structures with EEs containing VacA. CD2AP regulated those F-actin structures and was required to transfer VacA from GEECs to LEs. These results demonstrate that sorting from GEECs to LEs requires dynamic F-actin structures on EEs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Endosomas/metabolismo , Helicobacter pylori/química , Actinas/metabolismo , Citoesqueleto/metabolismo , Endocitosis , Glicosilfosfatidilinositoles/metabolismo , Células HeLa , Humanos , Transporte de Proteínas
19.
Proc Natl Acad Sci U S A ; 106(38): 16245-50, 2009 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-19805288

RESUMEN

A key molecular link between cells and the extracellular matrix is the binding between fibronectin and integrins alpha(5)beta(1) and alpha(v)beta(3). However, the roles of these different integrins in establishing adhesion remain unclear. We tested the adhesion strength of fibronectin-integrin-cytoskeleton linkages by applying physiological nanonewton forces to fibronectin-coated magnetic beads bound to cells. We report that the clustering of fibronectin domains within 40 nm led to integrin alpha(5)beta(1) recruitment, and increased the ability to sustain force by over six-fold. This force was supported by alpha(5)beta(1) integrin clusters. Importantly, we did not detect a role of either integrin alpha(v)beta(3) or talin 1 or 2 in maintaining adhesion strength. Instead, these molecules enabled the connection to the cytoskeleton and reinforcement in response to an applied force. Thus, high matrix forces are primarily supported by clustered alpha(5)beta(1) integrins, while less stable links to alpha(v)beta(3) integrins initiate mechanotransduction, resulting in reinforcement of integrin-cytoskeleton linkages through talin-dependent bonds.


Asunto(s)
Integrina alfaVbeta3/metabolismo , Mecanotransducción Celular/fisiología , Receptores de Vitronectina/metabolismo , Talina/metabolismo , Animales , Adhesión Celular/fisiología , Línea Celular , Movimiento Celular/fisiología , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Ratones , Ratones Noqueados , Microscopía de Contraste de Fase , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIA no Muscular/metabolismo , Unión Proteica , ARN Interferente Pequeño/genética , Transducción de Señal/fisiología , Talina/genética , Transfección
20.
Curr Opin Cell Biol ; 77: 102112, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35820329

RESUMEN

Cells ingest large particles, such as bacteria, viruses, or apoptotic cells, via the process of phagocytosis, which involves formation of an actin-rich structure known as the phagocytic cup. Phagocytic cup assembly and closure results from a concerted action of phagocytic receptors, regulators of actin polymerization, and myosin motors. Recent studies using advanced imaging approaches and biophysical techniques have revealed new information regarding phagocytic cup architecture, regulation of actin assembly, and the distribution, direction, and magnitude of the forces produced by the cytoskeletal elements that form the cup. These findings provide insights into the mechanisms leading to the assembly, expansion, and closure of phagocytic cups. The new data show that engulfment and internalization of phagocytic targets rely on several distinct yet complementary mechanisms that support the robust uptake of foreign objects and may be precisely tailored to the demands of specific phagocytic pathways.


Asunto(s)
Actinas , Fagocitosis , Actinas/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Fagocitos , Fagocitosis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA