Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
PLoS Genet ; 14(3): e1007278, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29565969

RESUMEN

Opacification of the ocular lens, termed cataract, is a common cause of blindness. To become transparent, lens fiber cells undergo degradation of their organelles, including their nuclei, presenting a fundamental question: does signaling/transcription sufficiently explain differentiation of cells progressing toward compromised transcriptional potential? We report that a conserved RNA-binding protein Celf1 post-transcriptionally controls key genes to regulate lens fiber cell differentiation. Celf1-targeted knockout mice and celf1-knockdown zebrafish and Xenopus morphants have severe eye defects/cataract. Celf1 spatiotemporally down-regulates the cyclin-dependent kinase (Cdk) inhibitor p27Kip1 by interacting with its 5' UTR and mediating translation inhibition. Celf1 deficiency causes ectopic up-regulation of p21Cip1. Further, Celf1 directly binds to the mRNA of the nuclease Dnase2b to maintain its high levels. Together these events are necessary for Cdk1-mediated lamin A/C phosphorylation to initiate nuclear envelope breakdown and DNA degradation in fiber cells. Moreover, Celf1 controls alternative splicing of the membrane-organization factor beta-spectrin and regulates F-actin-crosslinking factor Actn2 mRNA levels, thereby controlling fiber cell morphology. Thus, we illustrate new Celf1-regulated molecular mechanisms in lens development, suggesting that post-transcriptional regulatory RNA-binding proteins have evolved conserved functions to control vertebrate oculogenesis.


Asunto(s)
Proteínas CELF1/fisiología , Núcleo Celular/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Endodesoxirribonucleasas/genética , Cristalino/crecimiento & desarrollo , Proteínas de Unión al ARN/fisiología , Proteínas de Xenopus/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Línea Celular , Regulación de la Expresión Génica , Cristalino/citología , Cristalino/metabolismo , Ratones , Xenopus laevis , Pez Cebra
2.
Dev Dyn ; 249(5): 610-621, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31872467

RESUMEN

BACKGROUND: Ocular lens clouding is termed as cataract, which depending on the onset, is classified as congenital or age-related. Developing new cataract treatments requires new models. Thus far, Xenopus embryos have not been evaluated as a system for studying cataract. RESULTS: We characterized the developmental process of lens formation in Xenopus laevis tailbuds and tadpoles, and we disrupted the orthologues of three mammalian cataract-linked genes in F0 by CRISPR/Cas9. We assessed the consequences of gene inactivation by combining external examination with histochemical analyses and functional vision assays. Inactivating the key metazoan eye development transcription factor gene pax6 produces a strong eye phenotype including an absence of eye tissue. Inactivating the genes for gap-junction protein and a nuclease, gja8 and dnase2b, produces lens defects that share several features of human cataracts, including impaired vision acuity, nuclei retention in lens fiber cells, and actin fibers disorganization. We tested the potential improvement of the visual acuity of gja8 crispant tadpoles upon treatment with the molecular chaperone 4-phenylbutyrate. CONCLUSION: Xenopus is a valuable model organism to understand the molecular pathology of congenital eye defects, including cataracts, and to screen molecules with a potential to prevent or reverse cataracts.


Asunto(s)
Xenopus laevis/fisiología , Animales , Catarata/fisiopatología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Humanos , Cristalino/fisiología
3.
Hum Genet ; 139(12): 1541-1554, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32594240

RESUMEN

The homeodomain transcription factors (TFs) Pax6 (OMIM: 607108) and Prox1 (OMIM: 601546) critically regulate gene expression in lens development. While PAX6 mutations in humans can cause cataract, aniridia, microphthalmia, and anophthalmia, among other defects, Prox1 deletion in mice causes severe lens abnormalities, in addition to other organ defects. Furthermore, the optimal dosage/spatiotemporal expression of these key TFs is essential for development. In lens development, Pax6 expression is elevated in cells of the anterior epithelium compared to fiber cells, while Prox1 exhibits the opposite pattern. Whether post-transcriptional regulatory mechanisms control these precise TF expression patterns is unknown. Here, we report the unprecedented finding that the cataract-linked RNA-binding protein (RBP), Celf1 (OMIM: 601074), post-transcriptionally regulates Pax6 and Prox1 protein expression in lens development. Immunostaining shows that Celf1 lens-specific conditional knockout (Celf1cKO) mice exhibit abnormal elevation of Pax6 protein in fiber cells and abnormal Prox1 protein levels in epithelial cells-directly opposite to their normal expression patterns in development. Furthermore, RT-qPCR shows no change in Pax6 and Prox1 transcript levels in Celf1cKO lenses, suggesting that Celf1 regulates these TFs on the translational level. Indeed, RNA-immunoprecipitation assays using Celf1 antibody indicate that Celf1 protein binds to Pax6 and Prox1 transcripts. Furthermore, reporter assays in Celf1 knockdown and Celf1-overexpression cells demonstrate that Celf1 negatively controls Pax6 and Prox1 translation via their 3' UTRs. These data define a new mechanism of RBP-based post-transcriptional regulation that enables precise control over spatiotemporal expression of Pax6 and Prox1 in lens development, thereby uncovering a new etiological mechanism for Celf1 deficiency-based cataract.


Asunto(s)
Proteínas CELF1/genética , Catarata/genética , Proteínas de Homeodominio/genética , Cristalino/metabolismo , Factor de Transcripción PAX6/genética , Proteínas Supresoras de Tumor/genética , Animales , Proteínas CELF1/antagonistas & inhibidores , Proteínas CELF1/deficiencia , Catarata/patología , Diferenciación Celular/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Proteínas del Ojo/antagonistas & inhibidores , Proteínas del Ojo/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Cristalino/crecimiento & desarrollo , Ratones , Ratones Noqueados , Proteínas de Unión al ARN/genética
4.
Dev Biol ; 426(2): 449-459, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27546377

RESUMEN

Regulation of alternative splicing is an important process for cell differentiation and development. Down-regulation of Ptbp1, a regulatory RNA-binding protein, leads to developmental skin defects in Xenopus laevis. To identify Ptbp1-dependent splicing events potentially related to the phenotype, we conducted RNAseq experiments following Ptbp1 depletion. We systematically compared exon-centric and junction-centric approaches to detect differential splicing events. We showed that the junction-centric approach performs far better than the exon-centric approach in Xenopus laevis. We carried out the same comparisons using simulated data in human, which led us to propose that the better performances of the junction-centric approach in Xenopus laevis essentially relies on an incomplete exonic annotation associated with a correct transcription unit annotation. We assessed the capacity of the exon-centric and junction-centric approaches to retrieve known and to discover new Ptbp1-dependent splicing events. Notably, the junction-centric approach identified Ptbp1-controlled exons in agfg1, itga6, actn4, and tpm4 mRNAs, which were independently confirmed. We conclude that the junction-centric approach allows for a more complete and informative description of splicing events, and we propose that this finding might hold true for other species with incomplete annotations.


Asunto(s)
Empalme Alternativo , Ribonucleoproteínas Nucleares Heterogéneas/fisiología , Proteína de Unión al Tracto de Polipirimidina/fisiología , Proteínas de Xenopus/fisiología , Xenopus laevis/genética , Animales , Simulación por Computador , Embrión no Mamífero/metabolismo , Exones/genética , Biblioteca de Genes , Modelos Genéticos , Anotación de Secuencia Molecular , Morfolinos/farmacología , ARN Mensajero/genética , Alineación de Secuencia , Análisis de Secuencia de ARN , Xenopus laevis/embriología
5.
Dev Biol ; 409(2): 489-501, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26546114

RESUMEN

In humans, genetic diseases affecting skin integrity (genodermatoses) are generally caused by mutations in a small number of genes that encode structural components of the dermal-epidermal junctions. In this article, we first show that inactivation of both exosc9, which encodes a component of the RNA exosome, and ptbp1, which encodes an RNA-binding protein abundant in Xenopus embryonic skin, impairs embryonic Xenopus skin development, with the appearance of dorsal blisters along the anterior part of the fin. However, histological and electron microscopy analyses revealed that the two phenotypes are distinct. Exosc9 morphants are characterized by an increase in the apical surface of the goblet cells, loss of adhesion between the sensorial and peridermal layers, and a decrease in the number of ciliated cells within the blisters. Ptbp1 morphants are characterized by an altered goblet cell morphology. Gene expression profiling by deep RNA sequencing showed that the expression of epidermal and genodermatosis-related genes is also differentially affected in the two morphants, indicating that alterations in post-transcriptional regulations can lead to skin developmental defects through different routes. Therefore, the developing larval epidermis of Xenopus will prove to be a useful model for dissecting the post-transcriptional regulatory network involved in skin development and stability with significant implications for human diseases.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Técnicas de Silenciamiento del Gen , Ribonucleoproteínas Nucleares Heterogéneas/genética , Proteína de Unión al Tracto de Polipirimidina/genética , Proteínas de Unión al ARN/genética , Transducción de Señal , Piel/embriología , Piel/patología , Proteínas de Xenopus/genética , Xenopus laevis/embriología , Aletas de Animales/embriología , Animales , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/patología , Embrión no Mamífero/ultraestructura , Epidermis/efectos de los fármacos , Epidermis/patología , Epidermis/ultraestructura , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Hibridación in Situ , Morfolinos/farmacología , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteínas de Xenopus/metabolismo
6.
Cells ; 12(20)2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37887322

RESUMEN

Cataract, the opacification of the lens, is the leading cause of blindness worldwide. Although effective, cataract surgery is costly and can lead to complications. Toward identifying alternate treatments, it is imperative to develop organoid models relevant for lens studies and drug screening. Here, we demonstrate that by culturing mouse lens epithelial cells under defined three-dimensional (3D) culture conditions, it is possible to generate organoids that display optical properties and recapitulate many aspects of lens organization and biology. These organoids can be rapidly produced in large amounts. High-throughput RNA sequencing (RNA-seq) on specific organoid regions isolated via laser capture microdissection (LCM) and immunofluorescence assays demonstrate that these lens organoids display a spatiotemporal expression of key lens genes, e.g., Jag1, Pax6, Prox1, Hsf4 and Cryab. Further, these lens organoids are amenable to the induction of opacities. Finally, the knockdown of a cataract-linked RNA-binding protein encoding gene, Celf1, induces opacities in these organoids, indicating their use in rapidly screening for genes that are functionally relevant to lens biology and cataract. In sum, this lens organoid model represents a compelling new tool to advance the understanding of lens biology and pathology and can find future use in the rapid screening of compounds aimed at preventing and/or treating cataracts.


Asunto(s)
Catarata , Cristalino , Animales , Ratones , Cristalino/metabolismo , Catarata/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Unión al ARN/metabolismo , Organoides/metabolismo
7.
bioRxiv ; 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37503005

RESUMEN

The ocular lens, along with the cornea, focuses light on the retina to generate sharp images. Opacification of the lens, or cataract, is the leading cause of blindness worldwide. Presently, the best approach for cataract treatment is to surgically remove the diseased lens and replace it with an artificial implant. Although effective, this is costly and can have post-surgical complications. Toward identifying alternate treatments, it is imperative to develop organoid models relevant for lens studies and anti-cataract drug screening. Here, we demonstrate that by culturing mouse lens epithelial cells under defined 3-dimensional (3D) culture conditions, it is possible to generate organoids that display optical properties and recapitulate many aspects of lens organization at the tissue, cellular and transcriptomic levels. These 3D cultured lens organoids can be rapidly produced in large amounts. High-throughput RNA-sequencing (RNA-seq) on specific organoid regions isolated by laser capture microdissection (LCM) and immunofluorescence assays demonstrate that these lens organoids display spatiotemporal expression of key lens genes, e.g. , Jag1 , Pax6 , Prox1 , Hsf4 and Cryab . Further, these lens organoids are amenable to induction of opacities. Finally, knockdown of a cataract-linked RNA-binding protein encoding gene, Celf1 , induces opacities in these organoids, indicating their use in rapidly screening for genes functionally relevant to lens biology and cataract. In sum, this lens organoid model represents a compelling new tool to advance the understanding of lens biology and pathology, and can find future use in the rapid screening of compounds aimed at preventing and/or treating cataract.

8.
RNA ; 16(1): 10-5, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19933768

RESUMEN

Targeted inactivations of RNA-binding proteins (RNA-BPs) can lead to huge phenotypical defects. These defects are due to the deregulation of certain mRNAs. However, we generally do not know, among the hundreds of mRNAs that are normally controlled by one RNA-BP, which are responsible for the observed phenotypes. Here, we designed an antisense oligonucleotide ("target protector") that masks the binding site of the RNA-BP CUG-binding protein 1 (CUGBP1) on the mRNA Suppressor of Hairless [Su(H)] that encodes a key player of Notch signaling. We showed that injecting this oligonucleotide into Xenopus embryos specifically inhibited the binding of CUGBP1 to the mRNA. This caused the derepression of Su(H) mRNA, the overexpression of Su(H) protein, and a phenotypic defect, loss of somitic segmentation, similar to that caused by a knockdown of CUGBP1. To demonstrate a causal relationship between Su(H) derepression and the segmentation defects, a rescue experiment was designed. Embryonic development was restored when the translation of Su(H) mRNA was re-repressed and the level of Su(H) protein was reduced to a normal level. This "target protector and rescue assay" demonstrates that the phenotypic defects associated with CUGBP1 inactivation in Xenopus are essentially due to the deregulation of Su(H) mRNA. Similar approaches may be largely used to uncover the links between the phenotype caused by the inactivation of an RNA-BP and the identity of the RNAs associated with that protein.


Asunto(s)
ARN Mensajero/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/metabolismo , Animales , Secuencia de Bases , Proteínas CELF1 , Embrión no Mamífero , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Marcación de Gen/métodos , Modelos Biológicos , Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos Antisentido/farmacología , Fenotipo , Unión Proteica/fisiología , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/genética , Proteínas de Xenopus/genética , Xenopus laevis/embriología , Xenopus laevis/genética , Xenopus laevis/metabolismo
9.
Mol Cell Biol ; 27(3): 1146-57, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17130239

RESUMEN

CUG-BP1/CELF1 is a multifunctional RNA-binding protein involved in the regulation of alternative splicing and translation. To elucidate its role in mammalian development, we produced mice in which the Cugbp1 gene was inactivated by homologous recombination. These Cugbp1(-/-) mice were viable, although a significant portion of them did not survive after the first few days of life. They displayed growth retardation, and most Cugbp1(-/-) males and females exhibited impaired fertility. Male infertility was more thoroughly investigated. Histological examination of testes from Cugbp1(-/-) males showed an arrest of spermatogenesis that occurred at step 7 of spermiogenesis, before spermatid elongation begins, and an increased apoptosis. A quantitative reverse transcriptase PCR analysis showed a decrease of all the germ cell markers tested but not of Sertoli and Leydig markers, suggesting a general decrease in germ cell number. In wild-type testes, CUG-BP1 is expressed in germ cells from spermatogonia to round spermatids and also in Sertoli and Leydig cells. These findings demonstrate that CUG-BP1 is required for completion of spermatogenesis.


Asunto(s)
Trastornos del Crecimiento/congénito , Proteínas Mutantes/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Espermatogénesis/fisiología , Animales , Apoptosis , Biomarcadores , Proteínas CELF1 , Supervivencia Celular , Cruzamientos Genéticos , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/citología , Epidídimo/anomalías , Epidídimo/citología , Epidídimo/embriología , Femenino , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Genotipo , Células Germinativas/citología , Infertilidad Masculina , Masculino , Ratones , Proteínas Mutantes/genética , Fenotipo , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Testículo/anomalías , Testículo/citología , Testículo/embriología
10.
Cell Rep ; 28(5): 1307-1322.e8, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31365872

RESUMEN

CD40 has major roles in B cell development, activation, and germinal center responses. CD40 hypoactivity causes immunodeficiency whereas its overexpression causes autoimmunity and lymphomagenesis. To systematically identify B cell autonomous CD40 regulators, we use CRISPR/Cas9 genome-scale screens in Daudi B cells stimulated by multimeric CD40 ligand. These highlight known CD40 pathway components and reveal multiple additional mechanisms regulating CD40. The nuclear ubiquitin ligase FBXO11 supports CD40 expression by targeting repressors CTBP1 and BCL6. FBXO11 knockout decreases primary B cell CD40 abundance and impairs class-switch recombination, suggesting that frequent lymphoma monoallelic FBXO11 mutations may balance BCL6 increase with CD40 loss. At the mRNA level, CELF1 controls exon splicing critical for CD40 activity, while the N6-adenosine methyltransferase WTAP negatively regulates CD40 mRNA abundance. At the protein level, ESCRT negatively regulates activated CD40 levels while the negative feedback phosphatase DUSP10 limits downstream MAPK responses. These results serve as a resource for future studies and highlight potential therapeutic targets.


Asunto(s)
Linfocitos B/metabolismo , Antígenos CD40/biosíntesis , Sistemas CRISPR-Cas , Sistema de Señalización de MAP Quinasas , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Linfocitos B/citología , Antígenos CD40/genética , Proteínas CELF1/genética , Proteínas CELF1/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Humanos , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo
11.
Mol Cell Biol ; 35(18): 3244-53, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26169831

RESUMEN

CELF1 is a multifunctional RNA-binding protein that controls several aspects of RNA fate. The targeted disruption of the Celf1 gene in mice causes male infertility due to impaired spermiogenesis, the postmeiotic differentiation of male gametes. Here, we investigated the molecular reasons that underlie this testicular phenotype. By measuring sex hormone levels, we detected low concentrations of testosterone in Celf1-null mice. We investigated the effect of Celf1 disruption on the expression levels of steroidogenic enzyme genes, and we observed that Cyp19a1 was upregulated. Cyp19a1 encodes aromatase, which transforms testosterone into estradiol. Administration of testosterone or the aromatase inhibitor letrozole partly rescued the spermiogenesis defects, indicating that a lack of testosterone associated with excessive aromatase contributes to the testicular phenotype. In vivo and in vitro interaction assays demonstrated that CELF1 binds to Cyp19a1 mRNA, and reporter assays supported the conclusion that CELF1 directly represses Cyp19a1 translation. We conclude that CELF1 downregulates Cyp19a1 (Aromatase) posttranscriptionally to achieve high concentrations of testosterone compatible with spermiogenesis completion. We discuss the implications of these findings with respect to reproductive defects in men, including patients suffering from isolated hypogonadotropic hypogonadism and myotonic dystrophy type I.


Asunto(s)
Aromatasa/genética , Proteínas CELF1/genética , Citocromo P-450 CYP1A1/metabolismo , Hipogonadismo/genética , Testosterona/metabolismo , Animales , Inhibidores de la Aromatasa/farmacología , Proteínas CELF1/metabolismo , Citocromo P-450 CYP1A1/biosíntesis , Regulación hacia Abajo , Estradiol/biosíntesis , Hipogonadismo/etiología , Hipogonadismo/patología , Letrozol , Ratones , Ratones Noqueados , Distrofia Miotónica/etiología , Nitrilos/farmacología , Unión Proteica , Biosíntesis de Proteínas , Espermatogénesis/efectos de los fármacos , Espermatogénesis/fisiología , Testosterona/sangre , Triazoles/farmacología , Regulación hacia Arriba
12.
Biol Open ; 2(10): 1078-83, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24167718

RESUMEN

Somite segmentation is impaired in Xenopus celf1 morphant embryos. The Celf1 RNA-binding protein targets bound mRNAs for rapid degradation, and antisense approaches demonstrated that segmentation defects in celf1 morphants were due to a derepression of rbpj mRNA. Rbpj protein is a key player of Notch signalling. Because segmentation involves complex cross-talk between several signalling pathways, we analysed how rbpj derepression impacted these pathways. We found that rbpj derepression stimulated the Notch pathway. Notch positively controlled the expression of cyp26a, which encodes a retinoic acid (RA)-degrading enzyme. Thus, rbpj derepression led to cyp26a overexpression and RA attenuation. It also repressed fgf8, consistent with an inhibition of FGF signalling. Pharmacological inhibition of the FGF pathway repressed cyp26a, but rbpj derepression was sufficient to restore cyp26a expression. Hence, while it was known that the FGF pathway antagonized RA signalling through expression of cyp26a, our results suggest that Rbpj mediates this antagonism. Furthermore, they show that the post-transcriptional repression exerted by Celf1 on rbpj mRNA is required to keep cyp26a expression under the control of FGF signalling. We conclude that rbpj repression by Celf1 is important to couple the FGF and RA pathways in Xenopus segmentation.

13.
PLoS One ; 7(10): e46337, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23056285

RESUMEN

BACKGROUND: The first wave of spermatogenesis in mammals is characterized by a sequential and synchronous appearance of germ cells in the prepubertal testis. Post-transcriptional controls of gene expression play important roles in this process but the molecular actors that underlie them are poorly known. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the requirement for the RNA-binding protein CELF1 during the first wave of spermatogenesis in mice. Mice inactivated for Celf1 gene were not viable on pure genetic backgrounds. On a mixed background, we observed by histology and gene profiling by RT-qPCR that the testes of inactivated prepubertal mice were characterized by several features. (i) Spermiogenesis (differentiation of post-meiotic cells) was blocked in a subset of prepubertal inactivated mice. (ii) The appearance of the different stages of germ cell development was delayed by several days. (iii) The expression of markers of Leydig cells functions was similarly delayed. CONCLUSIONS/SIGNIFICANCE: Celf1 disruption is responsible for a blockage of spermiogenesis both in adults and in prepubertal males. Hence, the spermiogenesis defects found in Celf1-inactivated adults appear from the first wave of spermiogenesis. The disruption of Celf1 gene is also responsible for a fully penetrant delayed first wave of spermatogenesis, and a delay of steroidogenesis may be the cause for the delay of germ cells differentiation.


Asunto(s)
Silenciador del Gen , Proteínas de Unión al ARN/genética , Espermatogénesis/genética , Animales , Proteínas CELF1 , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena de la Polimerasa
14.
Trends Cell Biol ; 20(9): 533-41, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20630760

RESUMEN

Living organisms undergo biochemical, physiological and behavioral cycles with periods ranging from seconds to years. Cycles with intermediate periods are governed by endogenous clocks that depend on oscillating gene expression. Here we illustrate the modalities and specific functions of post-transcriptional control of gene expression (exerted on pre-mRNAs and mRNAs) in biological clocks through two examples: the circadian clock and the vertebrate somite segmentation clock, an embryonic clock with a period far below a day. We conclude that both constitutive and cyclic post-transcriptional controls underpin clock function.


Asunto(s)
Relojes Biológicos , Regulación de la Expresión Génica , Procesamiento Postranscripcional del ARN , Animales , Ritmo Circadiano , Desarrollo Embrionario , Humanos , ARN Mensajero/genética , Somitos/metabolismo
15.
Biol Cell ; 98(11): 653-65, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16836486

RESUMEN

BACKGROUND INFORMATION: mRNA deadenylation [shortening of the poly(A) tail] is often triggered by specific sequence elements present within mRNA 3' untranslated regions and generally causes rapid degradation of the mRNA. In vertebrates, many of these deadenylation elements are called AREs (AU-rich elements). The EDEN (embryo deadenylation element) sequence is a Xenopus class III ARE. EDEN acts by binding a specific factor, EDEN-BP (EDEN-binding protein), which in turn stimulates deadenylation. RESULTS: We show here that EDEN-BP is able to oligomerize. A 27-amino-acid region of EDEN-BP was identified as a key domain for oligomerization. A mutant of EDEN-BP lacking this region was unable to oligomerize, and a peptide corresponding to this region competitively inhibited the oligomerization of full-length EDEN-BP. Impairing oligomerization by either of these two methods specifically abolished EDEN-dependent deadenylation. Furthermore, impairing oligomerization inhibited the binding of EDEN-BP to its target RNA, demonstrating a strong coupling between EDEN-BP oligomerization and RNA binding. CONCLUSIONS: These data, showing that the oligomerization of EDEN-BP is required for binding of the protein on its target RNA and for EDEN-dependent deadenylation in Xenopus embryos, will be important for the identification of cofactors required for the deadenylation process.


Asunto(s)
Adenosina Monofosfato/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Xenopus/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión/fisiología , Embrión no Mamífero , Femenino , Datos de Secuencia Molecular , Polímeros/metabolismo , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología , Señales de Poliadenilación de ARN 3'/fisiología , ARN Mensajero/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Xenopus/biosíntesis , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Xenopus laevis
16.
Development ; 131(24): 6107-17, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15548579

RESUMEN

EDEN-BP is a Xenopus RNA-binding protein that triggers deadenylation [poly(A) tail shortening], and thereby translational repression and degradation, of a subset of maternal mRNAs soon after fertilization. We show here that this factor is expressed in the presomitic mesoderm of older embryos, the site where somitic segmentation takes place. Inhibiting EDEN-BP function using either antisense morpholino oligonucleotides or neutralizing antibodies leads to severe defects in somitic segmentation, but not myotomal differentiation. This is associated with defects in the expression of segmentation markers belonging to the Notch signalling pathway in the presomitic mesoderm. We show by a combination of approaches that the mRNA encoding XSu(H), a protein that plays a central role in Notch signalling, is regulated by the EDEN-BP pathway. Accordingly, XSu(H) is overexpressed in EDEN-BP knock-down embryos, and overexpressing XSu(H) causes segmentation defects. We finally give data indicating that, in addition to XSu(H), other segmentation RNAs are a target for EDEN-BP. These results show that EDEN-BP-dependent post-transcriptional regulation of gene expression is required for the process of somitic segmentation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Unión al ARN/genética , Somitos/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Animales , Clonación Molecular , Embrión no Mamífero/metabolismo , Poli A/genética , Proteínas de Unión al ARN/metabolismo , Somitos/citología , Xenopus laevis/embriología , Xenopus laevis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA