Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Strahlenther Onkol ; 196(10): 932-942, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32221622

RESUMEN

PURPOSE: Develop a deep-learning-based segmentation algorithm for prostate and its peripheral zone (PZ) that is reliable across multiple MRI vendors. METHODS: This is a retrospective study. The dataset consisted of 550 MRIs (Siemens-330, General Electric[GE]-220). A multistream 3D convolutional neural network is used for automatic segmentation of the prostate and its PZ using T2-weighted (T2-w) MRI. Prostate and PZ were manually contoured on axial T2­w. The network uses axial, coronal, and sagittal T2­w series as input. The preprocessing of the input data includes bias correction, resampling, and image normalization. A dataset from two MRI vendors (Siemens and GE) is used to test the proposed network. Six different models were trained, three for the prostate and three for the PZ. Of the three, two were trained on data from each vendor separately, and a third (Combined) on the aggregate of the datasets. The Dice coefficient (DSC) is used to compare the manual and predicted segmentation. RESULTS: For prostate segmentation, the Combined model obtained DSCs of 0.893 ± 0.036 and 0.825 ± 0.112 (mean ± standard deviation) on Siemens and GE, respectively. For PZ, the best DSCs were from the Combined model: 0.811 ± 0.079 and 0.788 ± 0.093. While the Siemens model underperformed on the GE dataset and vice versa, the Combined model achieved robust performance on both datasets. CONCLUSION: The proposed network has a performance comparable to the interexpert variability for segmenting the prostate and its PZ. Combining images from different MRI vendors on the training of the network is of paramount importance for building a universal model for prostate and PZ segmentation.


Asunto(s)
Aprendizaje Profundo , Imagen por Resonancia Magnética/métodos , Próstata/diagnóstico por imagen , Algoritmos , Conjuntos de Datos como Asunto , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética/instrumentación , Masculino , Próstata/patología , Procesos Estocásticos
2.
J Med Imaging (Bellingham) ; 5(3): 034502, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30840719

RESUMEN

We present a radiomics-based approach developed for the SPIE-AAPM-NCI PROSTATEx challenge. The task was to classify clinically significant prostate cancer in multiparametric (mp) MRI. Data consisted of a "training dataset" (330 suspected lesions from 204 patients) and a "test dataset" (208 lesions/140 patients). All studies included T2-weighted (T2-W), proton density-weighted, dynamic contrast enhanced, and diffusion-weighted imaging. Analysis of the images was performed using the MIM imaging platform (MIM Software, Cleveland, Ohio). Prostate and peripheral zone contours were manually outlined on the T2-W images. A workflow for rigid fusion of the aforementioned images to T2-W was created in MIM. The suspicious lesion was outlined using the high b-value image. Intensity and texture features were extracted on four imaging modalities and characterized using nine histogram descriptors: 10%, 25%, 50%, 75%, 90%, mean, standard deviation, kurtosis, and skewness (216 features). Three classification methods were used: classification and regression trees (CART), random forests, and adaptive least absolute shrinkage and selection operator (LASSO). In the held out by the organizers test dataset, the areas under the curve (AUCs) were: 0.82 (random forests), 0.76 (CART), and 0.76 (adaptive LASSO). AUC of 0.82 was the fourth-highest score of 71 entries (32 teams) and the highest for feature-based methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA