Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Mol Cell ; 78(5): 941-950.e12, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32464092

RESUMEN

mRNAs enriched in membraneless condensates provide functional compartmentalization within cells. The mechanisms that recruit transcripts to condensates are under intense study; however, how mRNAs organize once they reach a granule remains poorly understood. Here, we report on a self-sorting mechanism by which multiple mRNAs derived from the same gene assemble into discrete homotypic clusters. We demonstrate that in vivo mRNA localization to granules and self-assembly within granules are governed by different mRNA features: localization is encoded by specific RNA regions, whereas self-assembly involves the entire mRNA, does not involve sequence-specific, ordered intermolecular RNA:RNA interactions, and is thus RNA sequence independent. We propose that the ability of mRNAs to self-sort into homotypic assemblies is an inherent property of an messenger ribonucleoprotein (mRNP) that is augmented under conditions that increase RNA concentration, such as upon enrichment in RNA-protein granules, a process that appears conserved in diverse cellular contexts and organisms.


Asunto(s)
Gránulos Citoplasmáticos/fisiología , ARN Mensajero/genética , Ribonucleoproteínas/metabolismo , Animales , Gránulos Citoplasmáticos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Nucleares/metabolismo , Orgánulos/fisiología , ARN/genética , Transporte de ARN/genética , ARN Mensajero/metabolismo , Ribonucleoproteínas/genética
2.
PLoS Biol ; 21(4): e3002069, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37053289

RESUMEN

Compartmentalization of RNAs and proteins into membraneless structures called granules is a ubiquitous mechanism for organizing and regulating cohorts of RNAs. Germ granules are ribonucleoprotein (RNP) assemblies required for germline development across the animal kingdom, but their regulatory roles in germ cells are not fully understood. We show that after germ cell specification, Drosophila germ granules enlarge through fusion and this growth is accompanied by a shift in function. Whereas germ granules initially protect their constituent mRNAs from degradation, they subsequently target a subset of these mRNAs for degradation while maintaining protection of others. This functional shift occurs through the recruitment of decapping and degradation factors to the germ granules, which is promoted by decapping activators and renders these structures P body-like. Disrupting either the mRNA protection or degradation function results in germ cell migration defects. Our findings reveal plasticity in germ granule function that allows them to be repurposed at different stages of development to ensure population of the gonad by germ cells. Additionally, these results reveal an unexpected level of functional complexity whereby constituent RNAs within the same granule type can be differentially regulated.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Gránulos de Ribonucleoproteína de Células Germinales , Células Germinativas/metabolismo , ARN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Gránulos Citoplasmáticos/metabolismo , Caenorhabditis elegans/metabolismo
3.
PLoS Genet ; 19(8): e1010877, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37624861

RESUMEN

Localization of oskar mRNA to the posterior of the Drosophila oocyte is essential for abdominal patterning and germline development. oskar localization is a multi-step process involving temporally and mechanistically distinct transport modes. Numerous cis-acting elements and trans-acting factors have been identified that mediate earlier motor-dependent transport steps leading to an initial accumulation of oskar at the posterior. Little is known, however, about the requirements for the later localization phase, which depends on cytoplasmic flows and results in the accumulation of large oskar ribonucleoprotein granules, called founder granules, by the end of oogenesis. Using super-resolution microscopy, we show that founder granules are agglomerates of smaller oskar transport particles. In contrast to the earlier kinesin-dependent oskar transport, late-phase localization depends on the sequence as well as on the structure of the spliced oskar localization element (SOLE), but not on the adjacent exon junction complex deposition. Late-phase localization also requires the oskar 3' untranslated region (3' UTR), which targets oskar to founder granules. Together, our results show that 3' UTR-mediated targeting together with SOLE-dependent agglomeration leads to accumulation of oskar in large founder granules at the posterior of the oocyte during late stages of oogenesis. In light of previous work showing that oskar transport particles are solid-like condensates, our findings indicate that founder granules form by a process distinct from that of well-characterized ribonucleoprotein granules like germ granules, P bodies, and stress granules. Additionally, they illustrate how an individual mRNA can be adapted to exploit different localization mechanisms depending on the cellular context.


Asunto(s)
Gránulos de Ribonucleoproteínas Citoplasmáticas , Gránulos de Estrés , Animales , Regiones no Traducidas 3'/genética , Citoplasma , Drosophila/genética , ARN Mensajero/genética
4.
Development ; 149(10)2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35502752

RESUMEN

Dendritic arbor development is a complex, highly regulated process. Post-transcriptional regulation mediated by RNA-binding proteins plays an important role in neuronal dendrite morphogenesis by delivering on-site, on-demand protein synthesis. Here, we show how the Drosophila fragile X mental retardation protein (FMRP), a conserved RNA-binding protein, limits dendrite branching to ensure proper neuronal function during larval sensory neuron development. FMRP knockdown causes increased dendritic terminal branch growth and a resulting overelaboration defect due, in part, to altered microtubule stability and dynamics. FMRP also controls dendrite outgrowth by regulating the Drosophila profilin homolog chickadee (chic). FMRP colocalizes with chic mRNA in dendritic granules and regulates its dendritic localization and protein expression. Whereas RNA-binding domains KH1 and KH2 are both crucial for FMRP-mediated dendritic regulation, KH2 specifically is required for FMRP granule formation and chic mRNA association, suggesting a link between dendritic FMRP granules and FMRP function in dendrite elaboration. Our studies implicate FMRP-mediated modulation of both the neuronal microtubule and actin cytoskeletons in multidendritic neuronal architecture, and provide molecular insight into FMRP granule formation and its relevance to FMRP function in dendritic patterning.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Microtúbulos , Animales , Citoesqueleto/metabolismo , Drosophila/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Microtúbulos/metabolismo , Plasticidad Neuronal , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Nucleic Acids Res ; 51(16): 8836-8849, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37427795

RESUMEN

The Drosophila melanogaster protein Glorund (Glo) represses nanos (nos) translation and uses its quasi-RNA recognition motifs (qRRMs) to recognize both G-tract and structured UA-rich motifs within the nos translational control element (TCE). We showed previously that each of the three qRRMs is multifunctional, capable of binding to G-tract and UA-rich motifs, yet if and how the qRRMs combine to recognize the nos TCE remained unclear. Here we determined solution structures of a nos TCEI_III RNA containing the G-tract and UA-rich motifs. The RNA structure demonstrated that a single qRRM is physically incapable of recognizing both RNA elements simultaneously. In vivo experiments further indicated that any two qRRMs are sufficient to repress nos translation. We probed interactions of Glo qRRMs with TCEI_III RNA using NMR paramagnetic relaxation experiments. Our in vitro and in vivo data support a model whereby tandem Glo qRRMs are indeed multifunctional and interchangeable for recognition of TCE G-tract or UA-rich motifs. This study illustrates how multiple RNA recognition modules within an RNA-binding protein may combine to diversify the RNAs that are recognized and regulated.


Asunto(s)
Proteínas de Drosophila , ARN , Animales , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Biosíntesis de Proteínas , ARN/química
6.
Nucleic Acids Res ; 50(12): 7067-7083, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35699205

RESUMEN

Translational control of maternal mRNAs generates spatial and temporal patterns of protein expression necessary to begin animal development. Translational repression of unlocalized nanos (nos) mRNA in late-stage Drosophila oocytes by the hnRNP F/H homolog, Glorund (Glo), is important for embryonic body patterning. While previous work has suggested that repression occurs at both the translation initiation and elongation phases, the molecular mechanism by which Glo regulates nos translation remains elusive. Here, we have identified the Drosophila fragile X mental retardation protein, dFMRP, as a Glo interaction partner with links to the translational machinery. Using an oocyte-based in vitro translation system, we confirmed that Glo regulates both initiation and elongation of a nos translational reporter and showed that dFMRP specifically represses translation elongation and promotes ribosome stalling. Furthermore, we combined mutational analysis and in vivo and in vitro binding assays to show that Glo's qRRM2 domain specifically and directly interacts with dFMRP. Our findings suggest that Glo regulates nos translation elongation by recruiting dFMRP and that Glo's RNA-binding domains can also function as protein-protein interaction interfaces critical for its regulatory functions. Additionally, they reveal a mechanism for targeting dFMRP to specific transcripts.


Asunto(s)
Proteínas de Drosophila , Drosophila , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H , Proteínas de Unión al ARN , Animales , Drosophila/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/genética , Proteínas de Drosophila/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/genética
7.
PLoS Genet ; 16(12): e1009235, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33370772

RESUMEN

Dendritic arbor morphology influences how neurons receive and integrate extracellular signals. We show that the ELAV/Hu family RNA-binding protein Found in neurons (Fne) is required for space-filling dendrite growth to generate highly branched arbors of Drosophila larval class IV dendritic arborization neurons. Dendrites of fne mutant neurons are shorter and more dynamic than in wild-type, leading to decreased arbor coverage. These defects result from both a decrease in stable microtubules and loss of dendrite-substrate interactions within the arbor. Identification of transcripts encoding cytoskeletal regulators and cell-cell and cell-ECM interacting proteins as Fne targets using TRIBE further supports these results. Analysis of one target, encoding the cell adhesion protein Basigin, indicates that the cytoskeletal defects contributing to branch instability in fne mutant neurons are due in part to decreased Basigin expression. The ability of Fne to coordinately regulate the cytoskeleton and dendrite-substrate interactions in neurons may shed light on the behavior of cancer cells ectopically expressing ELAV/Hu proteins.


Asunto(s)
Citoesqueleto/metabolismo , Dendritas/metabolismo , Proteínas de Drosophila/metabolismo , Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Adhesión Celular , Dendritas/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Neurogénesis , Proteínas de Unión al ARN/genética
8.
Biophys J ; 121(8): 1465-1482, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35288123

RESUMEN

The packaging of specific mRNAs into ribonucleoprotein granules called germ granules is required for germline proliferation and maintenance. During Drosophila germ granule development, mRNAs such as nanos (nos) and polar granule component (pgc) localize to germ granules through a stochastic seeding and self-recruitment process that generates homotypic clusters: aggregates containing multiple copies of a specific transcript. Germ granules vary in mRNA composition with respect to the different transcripts that they contain and their quantity. However, what influences germ granule mRNA composition during development is unclear. To gain insight into how germ granule mRNA heterogeneity arises, we created a computational model that simulates granule development. Although the model includes known mechanisms that were converted into mathematical representations, additional unreported mechanisms proved to be essential for modeling germ granule formation. The model was validated by predicting defects caused by changes in mRNA and protein abundance. Broader application of the model was demonstrated by quantifying nos and pgc localization efficacies and the contribution that an element within the nos 3' untranslated region has on clustering. For the first time, a mathematical representation of Drosophila germ granule formation is described, offering quantitative insight into how mRNA compositions arise while providing a new tool for guiding future studies.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Simulación por Computador , Gránulos Citoplasmáticos/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Gránulos de Ribonucleoproteína de Células Germinales , Células Germinativas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
Development ; 145(22)2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30333216

RESUMEN

Specification and development of Drosophila germ cells depend on molecular determinants within the germ plasm, a specialized cytoplasmic domain at the posterior of the embryo. Localization of numerous mRNAs to the germ plasm occurs by their incorporation, as single-transcript ribonucleoprotein (RNP) particles, into complex RNP granules called polar granules. Incorporation of mRNAs into polar granules is followed by recruitment of additional like transcripts to form discrete homotypic clusters. The cis-acting localization signals that target mRNAs to polar granules and promote homotypic clustering remain largely uncharacterized. Here, we show that the polar granule component (pgc) and germ cell-less (gcl) 3' untranslated regions contain complex localization signals comprising multiple, independently weak and partially functionally redundant localization elements (LEs). We demonstrate that targeting of pgc to polar granules and self-assembly into homotypic clusters are functionally separable processes mediated by distinct classes of LEs. We identify a sequence motif shared by other polar granule mRNAs that contributes to homotypic clustering. Our results suggest that mRNA localization signal complexity may be a feature required by the targeting and self-recruitment mechanism that drives germ plasm mRNA localization.


Asunto(s)
Polaridad Celular/genética , Gránulos Citoplasmáticos/metabolismo , Drosophila melanogaster/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Regiones no Traducidas 3'/genética , Animales , Emparejamiento Base , Secuencia Conservada/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Motivos de Nucleótidos/genética , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
Development ; 143(12): 2147-59, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27256879

RESUMEN

Dendritic arbor morphology is a key determinant of neuronal function. Once established, dendrite branching patterns must be maintained as the animal develops to ensure receptive field coverage. The translational repressors Nanos (Nos) and Pumilio (Pum) are required to maintain dendrite growth and branching of Drosophila larval class IV dendritic arborization (da) neurons, but their specific regulatory role remains unknown. We show that Nos-Pum-mediated repression of the pro-apoptotic gene head involution defective (hid) is required to maintain a balance of dendritic growth and retraction in class IV da neurons and that upregulation of hid results in decreased branching because of an increase in caspase activity. The temporal requirement for nos correlates with an ecdysone-triggered switch in sensitivity to apoptotic stimuli that occurs during the mid-L3 transition. We find that hid is required during pupariation for caspase-dependent pruning of class IV da neurons and that Nos and Pum delay pruning. Together, these results suggest that Nos and Pum provide a crucial neuroprotective regulatory layer to ensure that neurons behave appropriately in response to developmental cues.


Asunto(s)
Apoptosis , Citoprotección , Proteínas de Drosophila/metabolismo , Neuropéptidos/metabolismo , Proteínas de Unión al ARN/metabolismo , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo , Transducción de Señal , Regiones no Traducidas 3'/genética , Animales , Caspasas/metabolismo , Dendritas/metabolismo , Proteínas de Drosophila/química , Ecdisona/metabolismo , Larva/citología , Larva/metabolismo , Mitocondrias/metabolismo , Mutación/genética , Fenotipo , Unión Proteica , Pupa/metabolismo , Proteínas de Unión al ARN/química , Regulación hacia Arriba/genética
11.
Methods ; 98: 34-41, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26827935

RESUMEN

The ability to visualize RNA in situ is essential to dissect mechanisms for the temporal and spatial regulation of gene expression that drives development. Although considerable attention has been focused on transcriptional control, studies in model organisms like Drosophila have highlighted the importance of post-transcriptional mechanisms - most notably intracellular mRNA localization - in the formation and patterning of the body axes, specification of cell fates, and polarized cell functions. Our understanding of both types of regulation has been greatly advanced by technological innovations that enable a combination of highly quantitative and dynamic analysis of RNA. This review presents two methods, single molecule fluorescence in situ hybridization for high resolution quantitative RNA detection in fixed Drosophila oocytes and embryos and genetically encoded fluorescent RNA labeling for detection in live cells.


Asunto(s)
Drosophila melanogaster/ultraestructura , Embrión no Mamífero/ultraestructura , Oocitos/ultraestructura , ARN Mensajero/química , Imagen Individual de Molécula/métodos , Coloración y Etiquetado/métodos , Animales , Tipificación del Cuerpo/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Embrión no Mamífero/metabolismo , Femenino , Fijadores/química , Regulación del Desarrollo de la Expresión Génica , Hibridación Fluorescente in Situ/métodos , Oocitos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Fijación del Tejido/métodos
12.
J Neurosci ; 33(37): 14791-800, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-24027279

RESUMEN

Intracellular mRNA localization is a conserved mechanism for spatially regulating protein production in polarized cells, such as neurons. The mRNA encoding the translational repressor Nanos (Nos) forms ribonucleoprotein (RNP) particles that are dendritically localized in Drosophila larval class IV dendritic arborization (da) neurons. In nos mutants, class IV da neurons exhibit reduced dendritic branching complexity, which is rescued by transgenic expression of wild-type nos mRNA but not by a localization-compromised nos derivative. While localization is essential for nos function in dendrite morphogenesis, the mechanism underlying the transport of nos RNP particles was unknown. We investigated the mechanism of dendritic nos mRNA localization by analyzing requirements for nos RNP particle motility in class IV da neuron dendrites through live imaging of fluorescently labeled nos mRNA. We show that dynein motor machinery components mediate transport of nos mRNA in proximal dendrites. Two factors, the RNA-binding protein Rumpelstiltskin and the germ plasm protein Oskar, which are required for diffusion/entrapment-mediated localization of nos during oogenesis, also function in da neurons for formation and transport of nos RNP particles. Additionally, we show that nos regulates neuronal function, most likely independent of its dendritic localization and function in morphogenesis. Our results reveal adaptability of localization factors for regulation of a target transcript in different cellular contexts.


Asunto(s)
Dendritas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteínas de Unión al ARN/genética , Células Receptoras Sensoriales/citología , Animales , Animales Modificados Genéticamente , Transporte Biológico/genética , Tipificación del Cuerpo/genética , Drosophila , Dineínas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Larva , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Actividad Motora/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
13.
Development ; 138(16): 3431-40, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21752933

RESUMEN

Asymmetric mRNA localization is an effective mechanism for establishing cellular and developmental polarity. Posterior localization of oskar in the Drosophila oocyte targets the synthesis of Oskar to the posterior, where Oskar initiates the assembly of the germ plasm. In addition to harboring germline determinants, the germ plasm is required for localization and translation of the abdominal determinant nanos. Consequently, failure of oskar localization during oogenesis results in embryos lacking germ cells and abdominal segments. oskar accumulates at the oocyte posterior during mid-oogenesis through a well-studied process involving kinesin-mediated transport. Through live imaging of oskar mRNA, we have uncovered a second, mechanistically distinct phase of oskar localization that occurs during late oogenesis and results in amplification of the germ plasm. Analysis of two newly identified oskar localization factors, Rumpelstiltskin and Lost, that are required specifically for this late phase of oskar localization shows that germ plasm amplification ensures robust abdomen and germ cell formation during embryogenesis. In addition, our results indicate the importance of mechanisms for adapting mRNAs to utilize multiple localization pathways as necessitated by the dramatic changes in ovarian physiology that occur during oogenesis.


Asunto(s)
Proteínas Portadoras/metabolismo , Citoplasma/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Oocitos/citología , Oocitos/metabolismo , Oogénesis , Alelos , Animales , Proteínas Portadoras/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Femenino , Ribonucleoproteínas Nucleares Heterogéneas/genética , Mutación , Unión Proteica , ARN Mensajero/genética
14.
Sci Adv ; 10(15): eadg7894, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608012

RESUMEN

During Drosophila oogenesis, the Oskar (OSK) RNA binding protein (RBP) determines the amount of germ plasm that assembles at the posterior pole of the oocyte. Here, we identify mechanisms that subsequently regulate germ plasm assembly in the early embryo. We show that the Smaug (SMG) RBP is transported into the germ plasm of the early embryo where it accumulates in the germ granules. SMG binds to and represses translation of the osk messenger RNA (mRNA) as well as the bruno 1 (bru1) mRNA, which encodes an RBP that we show promotes germ plasm production. Loss of SMG or mutation of SMG's binding sites in the osk or bru1 mRNA results in excess translation of these transcripts in the germ plasm, accumulation of excess germ plasm, and budding of excess primordial germ cells (PGCs). Therefore, SMG triggers a posttranscriptional regulatory pathway that attenuates the amount of germ plasm in embryos to modulate the number of PGCs.


Asunto(s)
Drosophila , Lagartos , Animales , Citoplasma , Células Germinativas , ARN Mensajero/genética , Recuento de Células
15.
Dev Biol ; 365(1): 208-18, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22391052

RESUMEN

The translational regulators Nanos (Nos) and Pumilio (Pum) work together to regulate the morphogenesis of dendritic arborization (da) neurons of the Drosophila larval peripheral nervous system. In contrast, Nos and Pum function in opposition to one another in the neuromuscular junction to regulate the morphogenesis and the electrophysiological properties of synaptic boutons. Neither the cellular functions of Nos and Pum nor their regulatory targets in neuronal morphogenesis are known. Here we show that Nos and Pum are required to maintain the dendritic complexity of da neurons during larval growth by promoting the outgrowth of new dendritic branches and the stabilization of existing dendritic branches, in part by regulating the expression of cut and head involution defective. Through an RNA interference screen we uncover a role for the translational co-factor Brain Tumor (Brat) in dendrite morphogenesis of da neurons and demonstrate that Nos, Pum, and Brat interact genetically to regulate dendrite morphogenesis. In the neuromuscular junction, Brat function is most likely specific for Pum in the presynaptic regulation of bouton morphogenesis. Our results reveal how the combinatorial use of co-regulators like Nos, Pum and Brat can diversify their roles in post-transcriptional regulation of gene expression for neuronal morphogenesis.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila/embriología , Neuronas/citología , Proteínas de Unión al ARN/fisiología , Animales , Diferenciación Celular , Proteínas de Unión al ADN/fisiología , Regulación del Desarrollo de la Expresión Génica , Larva/citología , Larva/fisiología , Morfogénesis , Procesamiento Postranscripcional del ARN
16.
Development ; 137(1): 169-76, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20023172

RESUMEN

Localization of bicoid mRNA to the anterior of the Drosophila oocyte is essential for patterning the anteroposterior body axis in the early embryo. bicoid mRNA localizes in a complex multistep process involving transacting factors, molecular motors and cytoskeletal components that remodel extensively during the lifetime of the mRNA. Genetic requirements for several localization factors, including Swallow and Staufen, are well established, but the precise roles of these factors and their relationship to bicoid mRNA transport particles remains unresolved. Here we use live cell imaging, super-resolution microscopy in fixed cells and immunoelectron microscopy on ultrathin frozen sections to study the distribution of Swallow, Staufen, actin and dynein relative to bicoid mRNA during late oogenesis. We show that Swallow and bicoid mRNA are transported independently and are not colocalized at their final destination. Furthermore, Swallow is not required for bicoid transport. Instead, Swallow localizes to the oocyte plasma membrane, in close proximity to actin filaments, and we present evidence that Swallow functions during the late phase of bicoid localization by regulating the actin cytoskeleton. In contrast, Staufen, dynein and bicoid mRNA form nonmembranous, electron dense particles at the oocyte anterior. Our results exclude a role for Swallow in linking bicoid mRNA to the dynein motor. Instead we propose a model for bicoid mRNA localization in which Swallow is transported independently by dynein and contributes indirectly to bicoid mRNA localization by organizing the cytoskeleton, whereas Staufen plays a direct role in dynein-dependent bicoid mRNA transport.


Asunto(s)
Actinas/fisiología , Proteínas de Drosophila/fisiología , Dineínas/fisiología , Proteínas de Homeodominio/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/fisiología , Transactivadores/genética , Actinas/genética , Actinas/metabolismo , Animales , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dineínas/genética , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Hibridación in Situ , Microscopía Fluorescente , Microscopía Inmunoelectrónica , Oocitos/metabolismo , Oocitos/ultraestructura , Oogénesis/genética , Oogénesis/fisiología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
17.
RNA ; 17(5): 967-77, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21460235

RESUMEN

Translational control of gene expression is essential for development in organisms that rely on maternal mRNAs. In Drosophila, translation of maternal nanos (nos) mRNA must be restricted to the posterior of the early embryo for proper patterning of the anterior-posterior axis. Spatial control of nos translation is coordinated through the localization of a small subset of nos mRNA to the posterior pole late in oogenesis, activation of this localized mRNA, and repression of the remaining unlocalized nos mRNA throughout the bulk cytoplasm. Translational repression is mediated by the interaction of a cis-acting element in the nos 3' untranslated region with two proteins, Glorund (Glo) and Smaug (Smg), that function in the oocyte and embryo, respectively. The mechanism of Glo-dependent repression is unknown. Previous work suggests that Smg represses translation initiation but this model is not easily reconciled with evidence for polysome association of repressed nos mRNA. Using an in vitro translation system, we have decoupled translational repression of nos imposed during oogenesis from repression during embryogenesis. Our results suggest that both Glo and Smg regulate translation initiation, but by different mechanisms. Furthermore, we show that, during late oogenesis, nos translation is also repressed post-initiation and provide evidence that Glo mediates this event. This post-initiation block is maintained into embryogenesis during the transition to Smg-dependent regulation. We propose that the use of multiple modes of repression ensures inactivation of nos RNA that is translated at earlier stages of oogenesis and maintenance of this inactivate state throughout late oogenesis into embryogenesis.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ovario/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Femenino , Oogénesis , Ovario/citología , Poli A/genética , Proteínas de Unión al ARN/genética
18.
EMBO Rep ; 12(11): 1167-74, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21921935

RESUMEN

Many RNAs show polarized or otherwise non-random subcellular distributions. To create a method for genome-wide genetic screens for RNAs with asymmetric subcellular distributions, we have combined methods for gene tagging and live imaging of messenger RNA (mRNA). A pilot screen in a highly polarized, differentiated cell in the Drosophila larva, the branched terminal cell of the tracheal system, demonstrates the feasibility of the method for identifying new asymmetrically localized mRNAs in vivo.


Asunto(s)
Drosophila melanogaster/genética , Pruebas Genéticas , Transporte de ARN/genética , ARN/metabolismo , Animales , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/metabolismo , Levivirus/metabolismo , Especificidad de Órganos/genética , Proyectos Piloto , Biosíntesis de Proteínas/genética , Reproducibilidad de los Resultados
19.
bioRxiv ; 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36909513

RESUMEN

During Drosophila oogenesis, the Oskar (OSK) RNA-binding protein (RBP) determines the amount of germ plasm that assembles at the posterior pole of the oocyte. Here we identify the mechanisms that regulate the osk mRNA in the early embryo. We show that the Smaug (SMG) RBP is transported into the germ plasm of the early embryo where it accumulates in the germ granules. SMG binds to and represses translation of the osk mRNA itself as well as the bruno 1 (bru1) mRNA, which encodes an RBP that we show promotes germ plasm production. Loss of SMG or mutation of SMG's binding sites in the osk or bru1 mRNAs results in ectopic translation of these transcripts in the germ plasm and excess PGCs. SMG therefore triggers a post-transcriptional regulatory pathway that attenuates germ plasm synthesis in embryos, thus modulating the number of PGCs.

20.
Sci Adv ; 9(25): eade5492, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37343092

RESUMEN

Stem cells in many systems, including Drosophila germline stem cells (GSCs), increase ribosome biogenesis and translation during terminal differentiation. Here, we show that the H/ACA small nuclear ribonucleoprotein (snRNP) complex that promotes pseudouridylation of ribosomal RNA (rRNA) and ribosome biogenesis is required for oocyte specification. Reducing ribosome levels during differentiation decreased the translation of a subset of messenger RNAs that are enriched for CAG trinucleotide repeats and encode polyglutamine-containing proteins, including differentiation factors such as RNA-binding Fox protein 1. Moreover, ribosomes were enriched at CAG repeats within transcripts during oogenesis. Increasing target of rapamycin (TOR) activity to elevate ribosome levels in H/ACA snRNP complex-depleted germlines suppressed the GSC differentiation defects, whereas germlines treated with the TOR inhibitor rapamycin had reduced levels of polyglutamine-containing proteins. Thus, ribosome biogenesis and ribosome levels can control stem cell differentiation via selective translation of CAG repeat-containing transcripts.


Asunto(s)
Ribonucleoproteínas Nucleares Pequeñas , Ribosomas , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Ribosomas/metabolismo , ARN Ribosómico , Proteínas/metabolismo , Sirolimus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA