RESUMEN
Toll-Like Receptors (TLRs) play a pivotal role in immunity by recognising conserved structural features of pathogens and initiating the innate immune response. TLR signalling is subject to complex regulation that remains poorly understood. Here we show that two small type I transmembrane receptors, TMED2 and 7, that function as cargo sorting adaptors in the early secretory pathway are required for transport of TLRs from the ER to Golgi. Protein interaction studies reveal that TMED7 interacts with TLR2, TLR4 and TLR5 but not with TLR3 and TLR9. On the other hand, TMED2 interacts with TLR2, TLR4 and TLR3. Dominant negative forms of TMED7 suppress the export of cell surface TLRs from the ER to the Golgi. By contrast TMED2 is required for the ER-export of both plasma membrane and endosomal TLRs. Together, these findings suggest that association of TMED2 and TMED7 with TLRs facilitates anterograde transport from the ER to the Golgi.
Asunto(s)
Receptor Toll-Like 2 , Receptor Toll-Like 4 , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 3/metabolismo , Receptores Toll-Like/metabolismo , Transporte de ProteínasRESUMEN
The B cell adaptor protein (BCAP) is a multimodular regulator of inflammatory signaling in diverse immune system cells. BCAP couples TLR signaling to phosphoinositide metabolism and inhibits MyD88-directed signal transduction. BCAP is recruited to the TLR signalosome forming multitypic interactions with the MAL and MyD88 signaling adaptors. In this study, we show that indirect dimerization of BCAP TIR is required for negative regulation of TLR signaling. This regulation is mediated by a transcription factor Ig (TIG/IPT) domain, a fold found in the NF-κB family of transcription factors. We have solved the crystal structure of the BCAP TIG and find that it is most similar to that of early B cell factor 1 (EBF1). In both cases, the dimer is stabilized by a helix-loop-helix motif at the C terminus and interactions between the ß-sheets of the Ig domains. BCAP is exclusively localized in the cytosol and is unable to bind DNA. Thus, the TIG domain is a promiscuous dimerization module that has been appropriated for a range of regulatory functions in gene expression and signal transduction.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Multimerización de Proteína , Transducción de Señal , Receptores Toll-Like/inmunología , Células Cultivadas , Células HEK293 , Humanos , Inmunoglobulinas/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal/inmunología , Células THP-1RESUMEN
Leucine-rich repeat kinase 2 (LRRK2) encodes a complex protein that includes kinase and GTPase domains. Genome-wide association studies have identified dominant LRRK2 alleles that predispose their carriers to late-onset idiotypic Parkinson's disease (PD) and also to autoimmune disorders such as Crohn's disease. Considerable evidence indicates that PD initiation and progression involve activation of innate immune functions in microglia, which are brain-resident macrophages. Here we asked whether LRRK2 modifies inflammatory signaling and how this modification might contribute to PD and Crohn's disease. We used RNA-Seq-based high-resolution transcriptomics to compare gene expression in activated primary macrophages derived from WT and Lrrk2 knockout mice. Remarkably, expression of a single gene, Rap guanine nucleotide exchange factor 3 (Rapgef3), was strongly up-regulated in the absence of LRRK2 and down-regulated in its presence. We observed similar regulation of Rapgef3 expression in cells treated with a highly specific inhibitor of LRRK2 protein kinase activity. Rapgef3 encodes an exchange protein, activated by cAMP 1 (EPAC-1), a guanine nucleotide exchange factor that activates the small GTPase Rap-1. Rap-1 mediates cell adhesion, polarization, and directional motility, and our results indicate that LRRK2 modulates chemotaxis of microglia and macrophages. Dominant PD-associated LRRK2 alleles may suppress EPAC-1 activity, further restricting motility and preventing efficient migration of microglia to sites of neuronal damage. Functional analysis in vivo in a subclinical infection model also indicated that Lrrk2 subtly modifies the inflammatory response. These results indicate that LRRK2 modulates the expression of genes involved in murine immune cell chemotaxis.
Asunto(s)
Adhesión Celular , Polaridad Celular , Quimiotaxis , Regulación de la Expresión Génica , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Activación de Macrófagos , Macrófagos/enzimología , Animales , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Ratones , Ratones Noqueados , Microglía/enzimología , Proteínas de Unión al GTP rap1/genética , Proteínas de Unión al GTP rap1/metabolismoRESUMEN
Infection of host cells by Toxoplasma gondii is an active process, which is regulated by secretion of microneme (MICs) and rhoptry proteins (ROPs and RONs) from specialized organelles in the apical pole of the parasite. MIC1, MIC4 and MIC6 assemble into an adhesin complex secreted on the parasite surface that functions to promote infection competency. MIC1 and MIC4 are known to bind terminal sialic acid residues and galactose residues, respectively and to induce IL-12 production from splenocytes. Here we show that rMIC1- and rMIC4-stimulated dendritic cells and macrophages produce proinflammatory cytokines, and they do so by engaging TLR2 and TLR4. This process depends on sugar recognition, since point mutations in the carbohydrate-recognition domains (CRD) of rMIC1 and rMIC4 inhibit innate immune cells activation. HEK cells transfected with TLR2 glycomutants were selectively unresponsive to MICs. Following in vitro infection, parasites lacking MIC1 or MIC4, as well as expressing MIC proteins with point mutations in their CRD, failed to induce wild-type (WT) levels of IL-12 secretion by innate immune cells. However, only MIC1 was shown to impact systemic levels of IL-12 and IFN-γ in vivo. Together, our data show that MIC1 and MIC4 interact physically with TLR2 and TLR4 N-glycans to trigger IL-12 responses, and MIC1 is playing a significant role in vivo by altering T. gondii infection competency and murine pathogenesis.
Asunto(s)
Moléculas de Adhesión Celular/inmunología , Células Dendríticas/inmunología , Inmunidad Innata , Macrófagos/inmunología , Proteínas Protozoarias/inmunología , Ácidos Siálicos/inmunología , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 4/inmunología , Toxoplasma/inmunología , Toxoplasmosis Animal/inmunología , Animales , Interleucina-12/inmunología , Ratones , Ratones Noqueados , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética , Toxoplasmosis Animal/genéticaRESUMEN
B-cell adaptor protein (BCAP) is a multimodular, multifunctional signal transducer that regulates signal transduction pathways in leukocytes, including macrophages, B-cells, and T-cells. In particular, BCAP suppresses inflammatory signaling by Toll-like receptors (TLRs). However, how BCAP itself is regulated and what its interaction partners are is unclear. Here, using human immune cell lines, including THP-1 cells, we characterized the complex phosphorylation patterns of BCAP and used a novel protein complex trapping strategy, called virotrap, to identify its interaction partners. This analysis identified known interactions of BCAP with phosphoinositide 3-kinase (PI3K) p85 subunit and NCK adaptor protein (NCK), together with previously unknown interactions of BCAP with Src homology 2 (SH2) and SH3 domain-containing adaptor proteins, notably growth factor receptor-bound protein 2 (GRB2) and CRK-like proto-oncogene, adaptor protein (CRKL). We show that the SH3 domain of GRB2 can bind to BCAP independently of BCAP phosphorylation status, suggesting that the SH2 domains mediate interactions with activated receptor tyrosine kinase complexes including the CD19 subunit of the B-cell receptor. Our results also suggested that the PI3K p85 subunit binds to BCAP via SH3 domains forming an inactive complex that is then activated by sequential binding with the SH2 domains. Taken together, our results indicate that BCAP is a complex hub that processes signals from multiple pathways in diverse cell types of the immune system.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína Adaptadora GRB2/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Agammaglobulinemia Tirosina Quinasa/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Línea Celular Tumoral , Genes Reporteros , Células HEK293 , Humanos , Espectrometría de Masas , Proteínas Oncogénicas/metabolismo , Péptidos/análisis , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Unión Proteica , Proto-Oncogenes Mas , Dominios Homologos srcRESUMEN
Cardiolipins (CLs) are tetra-acylated diphosphatidylglycerols found in bacteria, yeast, plants, and animals. In healthy mammals, CLs are unsaturated, whereas saturated CLs are found in blood cells from Barth syndrome patients and in some Gram-positive bacteria. Here, we show that unsaturated but not saturated CLs block LPS-induced NF-κB activation, TNF-α and IP-10 secretion in human and murine macrophages, as well as LPS-induced TNF-α and IL-1ß release in human blood mononuclear cells. Using HEK293 cells transfected with Toll-like receptor 4 (TLR4) and its co-receptor Myeloid Differentiation 2 (MD2), we demonstrate that unsaturated CLs compete with LPS for binding TLR4/MD2 preventing its activation, whereas saturated CLs are TLR4/MD2 agonists. As a consequence, saturated CLs induce a pro-inflammatory response in macrophages characterized by TNF-α and IP-10 secretion, and activate the alternative NLRP3 inflammasome pathway in human blood-derived monocytes. Thus, we identify that double bonds discriminate between anti- and pro-inflammatory properties of tetra-acylated molecules, providing a rationale for the development of TLR4 activators and inhibitors for use as vaccine adjuvants or in the treatment of TLR4-related diseases.
Asunto(s)
Cardiolipinas/farmacología , Macrófagos/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Animales , Antiinfecciosos/química , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Unión Competitiva , Cardiolipinas/química , Cardiolipinas/metabolismo , Supervivencia Celular/efectos de los fármacos , Quimiocina CXCL10/metabolismo , Células HEK293 , Humanos , Receptores de Lipopolisacáridos/metabolismo , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Antígeno 96 de los Linfocitos/genética , Antígeno 96 de los Linfocitos/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Monocitos/citología , Monocitos/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Unión Proteica , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/genética , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
In the published article, the Fig. 2 was published incorrectly. The correct Fig. 2 is given below.
RESUMEN
Neurotrophism, structural plasticity, learning and long-term memory in mammals critically depend on neurotrophins binding Trk receptors to activate tyrosine kinase (TyrK) signaling, but Drosophila lacks full-length Trks, raising the question of how these processes occur in the fly. Paradoxically, truncated Trk isoforms lacking the TyrK predominate in the adult human brain, but whether they have neuronal functions independently of full-length Trks is unknown. Drosophila has TyrK-less Trk-family receptors, encoded by the kekkon (kek) genes, suggesting that evolutionarily conserved functions for this receptor class may exist. Here, we asked whether Keks function together with Drosophila neurotrophins (DNTs) at the larval glutamatergic neuromuscular junction (NMJ). We tested the eleven LRR and Ig-containing (LIG) proteins encoded in the Drosophila genome for expression in the central nervous system (CNS) and potential interaction with DNTs. Kek-6 is expressed in the CNS, interacts genetically with DNTs and can bind DNT2 in signaling assays and co-immunoprecipitations. Ligand binding is promiscuous, as Kek-6 can also bind DNT1, and Kek-2 and Kek-5 can also bind DNT2. In vivo, Kek-6 is found presynaptically in motoneurons, and DNT2 is produced by the muscle to function as a retrograde factor at the NMJ. Kek-6 and DNT2 regulate NMJ growth and synaptic structure. Evidence indicates that Kek-6 does not antagonise the alternative DNT2 receptor Toll-6. Instead, Kek-6 and Toll-6 interact physically, and together regulate structural synaptic plasticity and homeostasis. Using pull-down assays, we identified and validated CaMKII and VAP33A as intracellular partners of Kek-6, and show that they regulate NMJ growth and active zone formation downstream of DNT2 and Kek-6. The synaptic functions of Kek-6 could be evolutionarily conserved. This raises the intriguing possibility that a novel mechanism of structural synaptic plasticity involving truncated Trk-family receptors independently of TyrK signaling may also operate in the human brain.
Asunto(s)
Proteínas de Drosophila/genética , Proteínas de la Membrana/genética , Factores de Crecimiento Nervioso/metabolismo , Plasticidad Neuronal/genética , Proteínas Tirosina Quinasas Receptoras/genética , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteínas Portadoras/genética , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Drosophila/genética , Drosophila/fisiología , Humanos , Larva/metabolismo , Neuronas Motoras/metabolismo , Factores de Crecimiento Nervioso/genética , Unión Neuromuscular , Unión Proteica , Transducción de Señal , Transmisión SinápticaRESUMEN
A paper published in BMC Biology characterises biophysically oligomeric and filamentous structures formed spontaneously by the Toll-like receptor signalling adaptor MyD88. Naturally occurring mutants of MyD88 that cause immunodeficiency are unable to form these structures. By contrast a somatic mutant that promotes the survival of tumour cells forms oligomers much more readily than the wild-type protein. These findings suggest that assembly of oligomeric MyD88 is critical for the regulation of inflammatory signalling.
Asunto(s)
Factor 88 de Diferenciación Mieloide/química , Receptores Toll-Like/genética , Sistema Inmunológico , Mutación , Transducción de Señal/inmunologíaRESUMEN
Ligand binding to Toll-like receptors (TLRs) results in dimerization of their cytosolic Toll/interleukin-1 receptor (TIR) domains and recruitment of post-receptor signal transducers into a complex signalosome. TLR activation leads to the production of transcription factors and pro-inflammatory molecules and the activation of phosphoinositide 3-kinases (PI3K) in a process that requires the multimodular B-cell adaptor for phosphoinositide 3-kinase (BCAP). BCAP has a sequence previously proposed as a "cryptic" TIR domain. Here, we present the structure of the N-terminal region of human BCAP and show that it possesses a canonical TIR fold. Dimeric BCAP associates with the TIR domains of TLR2/4 and MAL/TIRAP, suggesting that it is recruited to the TLR signalosome by multitypic TIR-TIR interactions. BCAP also interacts with the p85 subunit of PI3K and phospholipase Cγ, enzymes that deplete plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2), and these interactions provide a molecular explanation for BCAP-mediated down-regulation of inflammatory signaling.
Asunto(s)
Proteínas Portadoras/química , Multimerización de Proteína , Transducción de Señal , Receptor Toll-Like 2/química , Receptor Toll-Like 4/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/química , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/genética , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/metabolismo , Fosfatidilinositol 3-Quinasas , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Dominios Proteicos , Receptores de Interleucina-1/química , Receptores de Interleucina-1/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismoRESUMEN
The Toll-like receptor 9 (TLR9) is activated by DNA presented in acidified, intracellular compartments. Previous studies suggested that signaling required unmethylated CpG dinucleotides, but in this issue of Immunity, Haas et al. (2008) challenge this view, showing that DNA can activate TLR9 in a sequence-independent manner.
Asunto(s)
ADN/inmunología , Patrones de Reconocimiento Fisiológico , Receptor Toll-Like 9/inmunología , Animales , ADN/química , Humanos , Oligonucleótidos/química , Oligonucleótidos/inmunología , Receptor Toll-Like 9/metabolismoRESUMEN
Members of the Toll family of single-pass transmembrane receptors are key mediators of innate immunity in both vertebrates and invertebrates. They respond to various pathogen-associated stimuli and transduce the complex signalling responses that are required for inflammation and for the subsequent development of adaptive immunity. Here, we propose a molecular mechanism for signalling by the Toll and Toll-like receptors that involves a series of protein conformational changes initiated by dimerization of their extracellular domains. The initial dimerization event, which is triggered by the interaction of the receptor with its ligand, might disrupt a pre-formed but non-functional dimer. Formation of a stable receptor-ligand complex then relieves constitutive autoinhibition, enabling receptor-receptor association of the extracellular juxtamembrane regions and cytoplasmic signalling domains. This activation process constitutes a tightly regulated, unidirectional molecular switch.
Asunto(s)
Transducción de Señal , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo , Animales , Humanos , Ligandos , Modelos Moleculares , Unión Proteica , Receptores Toll-Like/químicaRESUMEN
Drosophila Toll functions in embryonic development and innate immunity and is activated by an endogenous ligand, Spätzle (Spz). The related Toll-like receptors in vertebrates also function in immunity but are activated directly by pathogen-associated molecules such as bacterial endotoxin. Here, we present the crystal structure at 2.35-Å resolution of dimeric Spz bound to a Toll ectodomain encompassing the first 13 leucine-rich repeats. The cystine knot of Spz binds the concave face of the Toll leucine-rich repeat solenoid in an area delineated by N-linked glycans and induces a conformational change. Mutagenesis studies confirm that the interface observed in the crystal structure is relevant for signaling. The asymmetric binding mode of Spz to Toll is similar to that of nerve growth factor (NGF) in complex with the p75 neurotrophin receptor but is distinct from that of microbial ligands bound to the Toll-like receptors. Overall, this study indicates an allosteric signaling mechanism for Toll in which ligand binding to the N terminus induces a conformational change that couples to homodimerization of juxtamembrane structures in the Toll ectodomain C terminus.
Asunto(s)
Proteínas de Drosophila/química , Multimerización de Proteína/fisiología , Receptores Toll-Like/química , Animales , Cristalografía por Rayos X , Proteínas de Drosophila/inmunología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Endotoxinas/química , Endotoxinas/inmunología , Endotoxinas/metabolismo , Inmunidad Innata/fisiología , Factor de Crecimiento Nervioso/química , Factor de Crecimiento Nervioso/inmunología , Factor de Crecimiento Nervioso/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Receptor de Factor de Crecimiento Nervioso/química , Receptor de Factor de Crecimiento Nervioso/inmunología , Receptor de Factor de Crecimiento Nervioso/metabolismo , Secuencias Repetitivas de Aminoácido , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismoRESUMEN
A functionally important proline residue is highly conserved in the cytosolic Toll/IL-1R signaling domains of human TLRs. The antiviral Toll, TLR3, is unusual because it has alanine instead of proline at this position and is the only human TLR that associates directly with the adaptor molecule TIR domain-containing adaptor inducing IFN-ß (TRIF) rather than MyD88. In this article, we report that a mutant TLR3 that substitutes the BB-loop alanine for proline (A795P) enhances NF-κB activation but is incapable of mediating TRIF-dependent IFN response factor 3 responses. Wild-type and A795P TLR3 associate constitutively with both TRIF and MyD88, and activation induces additional binding of TRIF to the wild-type and of MyD88 to the A795P mutant receptors, respectively. In addition, activation of A795P, but not wild-type TLR3, leads to the recruitment of TRAF6, a downstream signal transducer of the MyD88-dependent pathway. These results show that adaptor specificity can be conferred by minimal determinants of the Toll/IL-1R domain.
Asunto(s)
Sustitución de Aminoácidos , Mutación Missense , Mutación Puntual , Receptor Toll-Like 3/genética , Proteínas Adaptadoras del Transporte Vesicular/antagonistas & inhibidores , Proteínas Adaptadoras del Transporte Vesicular/fisiología , Alanina/química , Sitios de Unión , Células HEK293 , Humanos , Factor 3 Regulador del Interferón/fisiología , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/fisiología , Poli I-C/farmacología , Prolina/química , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/genética , Especificidad de la Especie , Relación Estructura-Actividad , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptor Toll-Like 3/química , Receptor Toll-Like 3/fisiologíaRESUMEN
Signaling by the toll-like receptor (TLR) and interleukin-1 receptor superfamily requires the adapter protein myeloid differentiation primary response protein 88 (MyD88). The recent determination of the structure of the so-called Myddosome provides us with new insights into the structural basis for innate immune signaling. Other information on the biochemistry and genetics of MyD88 and other adapters, such as MyDD adapter-like and TRIF-related adapter molecule, allows us to describe in some detail the signaling process activated by TLRs and provides new insights into the role these important proteins play in innate immunity.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Inmunidad Innata , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Humanos , Multimerización de Proteína , Transducción de Señal , Receptores Toll-Like/química , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismoRESUMEN
Initiation of the innate immune response requires agonist recognition by pathogen-recognition receptors such as the Toll-like receptors (TLRs). Toll/interleukin-1 receptor (TIR) domain-containing adaptors are critical in orchestrating the signal transduction pathways after TLR and interleukin-1 receptor activation. Myeloid differentiation primary response gene 88 (MyD88) adaptor-like (MAL)/TIR domain-containing adaptor protein (TIRAP) is involved in bridging MyD88 to TLR2 and TLR4 in response to bacterial infection. Genetic studies have associated a number of unique single-nucleotide polymorphisms in MAL with protection against invasive microbial infection, but a molecular understanding has been hampered by a lack of structural information. The present study describes the crystal structure of MAL TIR domain. Significant structural differences exist in the overall fold of MAL compared with other TIR domain structures: A sequence motif comprising a ß-strand in other TIR domains instead corresponds to a long loop, placing the functionally important "BB loop" proline motif in a unique surface position in MAL. The structure suggests possible dimerization and MyD88-interacting interfaces, and we confirm the key interface residues by coimmunoprecipitation using site-directed mutants. Jointly, our results provide a molecular and structural basis for the role of MAL in TLR signaling and disease protection.
Asunto(s)
Inmunidad Innata/fisiología , Glicoproteínas de Membrana/química , Receptores de Interleucina-1/química , Transducción de Señal/fisiología , Secuencias de Aminoácidos , Humanos , Infecciones , Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/metabolismo , Factor 88 de Diferenciación Mieloide/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Multimerización de Proteína/inmunología , Receptores de Interleucina-1/inmunología , Receptores de Interleucina-1/metabolismo , Relación Estructura-Actividad , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismoRESUMEN
The Toll-like receptors and NOD-like receptors are key families in the innate immune response. The specific detection of activating ligand facilitates receptor interactions, the formation of multiprotein signalling complexes and initiation of signal transduction cascades. This process can trigger the upregulation of proinflammatory mediators, apoptosis, and modulation of other immune defences. Recently, significant advances have been made in the identification of new activating ligands and the determination of the molecular basis of ligand recognition within these receptor families. Understanding these processes provides information essential to the development of new vaccine adjuvants and the treatment of infectious diseases, inflammatory disorders and, potentially, cancer.
Asunto(s)
Inmunidad , Proteínas Adaptadoras de Señalización NOD/química , Transducción de Señal/inmunología , Receptores Toll-Like/química , Animales , Humanos , Modelos Moleculares , Proteínas Adaptadoras de Señalización NOD/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Receptores Toll-Like/metabolismoRESUMEN
Initiation of the innate immune response requires agonist recognition by a pathogen recognition receptor. Following ligand binding, conformational rearrangement of the receptor creates a molecular scaffold from which signal transduction is propagated via complex cellular signaling pathways. This in turn leads to the induction of a pro-inflammatory immune response. A critical component of these signaling pathways is the homotypic interaction of receptor and adapter proteins via specific protein interaction domains. Within the innate immune signaling cascade, homotypic interactions between members of the death domain family and the Toll/interleukin-1 receptor domain are particularly important. Here we discuss the current understanding of the molecular basis of these homotypic receptor:adapter interactions and their role in innate immune signal transduction.
Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Proteínas del Helminto/inmunología , Inmunidad Innata , Receptores Citoplasmáticos y Nucleares/inmunología , Transducción de Señal/inmunología , Regulación Alostérica/inmunología , Animales , Proteínas Adaptadoras de Señalización CARD/química , Proteínas Adaptadoras de Señalización CARD/inmunología , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/química , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/inmunología , Proteínas del Helminto/metabolismo , Interacciones Huésped-Patógeno/inmunología , Humanos , Infecciones/inmunología , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional/inmunología , Transporte de Proteínas/inmunología , Receptores Citoplasmáticos y Nucleares/química , Relación Estructura-Actividad , Receptores Toll-Like/química , Receptores Toll-Like/inmunologíaRESUMEN
Innate immune receptors detect microbial pathogens and subsequently activate adaptive immune responses to combat pathogen invasion. MyD88 is a key adaptor molecule in both Toll-like receptor (TLR) and IL-1 receptor superfamily signaling pathways. This is illustrated by the fact that human individuals carrying rare, naturally occurring MYD88 point mutations suffer from reoccurring life-threatening infections. Here we analyzed the functional properties of six reported non-synonymous single nucleotide polymorphisms of MYD88 in an in vitro cellular system. Two variants found in the MyD88 death domain, S34Y and R98C, showed severely reduced NF-κB activation due to reduced homo-oligomerization and IRAK4 interaction. Structural modeling highlights Ser-34 and Arg-98 as residues important for the assembly of the Myddosome, a death domain (DD) post-receptor complex involving the DD of MyD88, IRAK4, and IRAK2 or IRAK1. Using S34Y and R98C as functional probes, our data show that MyD88 homo-oligomerization and IRAK4 interaction is modulated by the MyD88 TIR and IRAK4 kinase domain, demonstrating the functional importance of non-DD regions not observed in a recent Myddosome crystal structure. The differential interference of S34Y and R98C with some (IL-1 receptor, TLR2, TLR4, TLR5, and TLR7) but not all (TLR9) MyD88-dependent signaling pathways also suggests that receptor specificities exist at the level of the Myddosome. Given their detrimental effect on signaling, it is not surprising that our epidemiological analysis in several case-control studies confirms that S34Y and R98C are rare variants that may drastically contribute to susceptibility to infection in only few individuals.
Asunto(s)
Variación Genética , Infecciones/genética , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Factor 88 de Diferenciación Mieloide , Transducción de Señal/inmunología , Cristalografía , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Infecciones/inmunología , Infecciones/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/inmunología , Modelos Químicos , Factor 88 de Diferenciación Mieloide/química , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple , Estructura Terciaria de Proteína , Relación Estructura-ActividadRESUMEN
Infection by the Ebola virus, a member of the Filoviridae family of RNA viruses, leads to acute viral hemorrhagic fever. End-stage Ebola virus disease is characterized by a cytokine storm that causes tissue damage, vascular disintegration, and multi-organ failure. Previous studies showed that a shed form of the viral spike glycoprotein (sGP1,2) drives this hyperinflammatory response by activating Toll-like receptor 4 (TLR4). Here, we find that glycosylation is not required for activation of TLR4 by sGP1,2 and identify the internal fusion loop (IFL) as essential for inflammatory signaling. sGP1,2 competes with lipid antagonists of TLR4, and the IFL interacts directly with TLR4 and co-receptor MD2. Together, these findings indicate that sGP1,2 activates TLR4 analogously to bacterial agonist lipopolysaccharide (LPS) by binding into a hydrophobic pocket in MD2 and promoting the formation of an active heterotetramer. This conclusion is supported by docking studies that predict binding sites for sGP1,2 on TLR4 and MD2.