Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686295

RESUMEN

The severe acute respiratory syndrome-causing coronavirus 2 (SARS-CoV-2) papain-like protease (PLpro) and main protease (Mpro) play an important role in viral replication events and are important targets for anti-coronavirus drug discovery. In search of these protease inhibitors, we screened a library of 1300 compounds using a fluorescence thermal shift assay (FTSA) and identified 53 hits that thermally stabilized or destabilized PLpro. The hit compounds structurally belonged to two classes of small molecules: thiazole derivatives and symmetrical disulfide compounds. Compound dissociation constants (Kd) were determined using an enzymatic inhibition method. Seven aromatic disulfide compounds were identified as efficient PLpro inhibitors with Kd values in the micromolar range. Two disulfides displayed six-fold higher potency for PLpro (Kd = 0.5 µM) than for Mpro. The disulfide derivatives bound covalently to both proteases, as confirmed through mass spectrometry. The identified compounds can serve as lead compounds for further chemical optimization toward anti-COVID-19 drugs.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Inhibidores de Proteasas/farmacología , Disulfuros , Papaína
2.
Eur Biophys J ; 47(3): 271-290, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28975383

RESUMEN

Membrane-associated carbonic anhydrase (CA) isoform IV participates in carbon metabolism and pH homeostasis and is implicated in the development of eye diseases such as retinitis pigmentosa and glaucoma. A series of substituted benzenesulfonamides were designed and their binding affinity to CA IV was determined by fluorescent thermal shift assay and isothermal titration calorimetry (ITC). Compound [(4-chloro-2-phenylsulfanyl-5-sulfamoyl-benzoyl)amino]propyl acetate (19) bound CA IV with the K d of 1.0 nM and exhibited significant selectivity over the remaining 11 human CA isoforms. The compound could be developed as a drug targeting CA IV. Various forms of recombinant CA IV were produced in Escherichia coli and mammalian cell cultures. Comparison of their temperature stability in various buffers and salt solutions demonstrated that CA IV is most stable at slightly alkaline conditions and at elevated sodium sulfate concentrations. High-resolution X-ray crystallographic structures of ortho-Cl and meta-thiazole-substituted benzene sulfonamide in complex with CA IV revealed the position of and interactions between the ligand and the protein. Sulfonamide inhibitor binding to CA IV is linked to several reactions-the deprotonation of the sulfonamide amino group, the protonation of CA-Zn(II)-bound hydroxide at the active site of CA IV, and the compensating reactions of the buffer. The dissection of binding-linked reactions yielded the intrinsic thermodynamic parameters, characterizing the interaction between CA IV and the sulfonamides in the binding-able protonation forms, including Gibbs energy, enthalpy, and entropy, that could be used for the characterization of binding to any CA in the process of drug design.


Asunto(s)
Anhidrasa Carbónica IV/antagonistas & inhibidores , Anhidrasa Carbónica IV/metabolismo , Inhibidores de Anhidrasa Carbónica/metabolismo , Proteínas Recombinantes/metabolismo , Anhidrasa Carbónica IV/química , Inhibidores de Anhidrasa Carbónica/farmacología , Dominio Catalítico , Humanos , Ligandos , Modelos Moleculares , Unión Proteica , Proteínas Recombinantes/química , Termodinámica
3.
Bioorg Med Chem ; 26(3): 675-687, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29305297

RESUMEN

The similarity of human carbonic anhydrase (CA) active sites makes it difficult to design selective inhibitors for one or several CA isoforms that are drug targets. Here we synthesize a series of compounds that are based on 5-[2-(benzimidazol-1-yl)acetyl]-2-chloro-benzenesulfonamide (1a) which demonstrated picomolar binding affinity and significant selectivity for CA isoform five A (VA), and explain the structural influence of inhibitor functional groups to the binding affinity and selectivity. A series of chloro-substituted benzenesulfonamides bearing a heterocyclic tail, together with molecular docking, was used to build inhibitors that explore substituent influence on the binding affinity to the CA VA isoform.


Asunto(s)
Bencimidazoles/química , Inhibidores de Anhidrasa Carbónica/síntesis química , Anhidrasas Carbónicas/química , Diseño de Fármacos , Bencimidazoles/síntesis química , Bencimidazoles/metabolismo , Sitios de Unión , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/metabolismo , Anhidrasas Carbónicas/metabolismo , Dominio Catalítico , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
4.
Eur J Med Chem ; 273: 116505, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38788300

RESUMEN

Human Hsp90 chaperones are implicated in various aspects of cancer. Due to this, Hsp90 has been explored as potential target in cancer treatment. Initial attempts to use Hsp90 inhibitors in drug trials failed due to toxicity and inefficacy. The next generation of drugs were less toxic but still insufficiently effective in a clinical setting. Recently, a lot of effort is being put into understanding the consequences of Hsp90 isoform selective inhibition, expecting that this might hold the key in targeting Hsp90 for disease treatment. Here we investigate a series of compounds containing the aryl-resorcinol scaffold with a 5-membered ring as a promising class of new human Hsp90 inhibitors, reaching nanomolar affinity. We compare how the replacement of 5-membered ring, from thiadiazole to imidazole, as well as a variety of their substituents, influences the potency of these inhibitors for Hsp90 alpha and beta isoforms. To further elucidate the dissimilarity in ligand selectivity between the isoforms, a mutant protein was constructed and tested against the ligand library. In addition, we performed a series of molecular dynamics (MD) and docking simulations to further explain our experimental findings as well as evaluated key compounds in cell assays. Our results deepen the understanding of Hsp90 isoform ligand selectivity and serve as an informative base for further Hsp90 inhibitor optimization.


Asunto(s)
Diseño de Fármacos , Proteínas HSP90 de Choque Térmico , Imidazoles , Resorcinoles , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Resorcinoles/química , Resorcinoles/farmacología , Resorcinoles/síntesis química , Imidazoles/química , Imidazoles/farmacología , Imidazoles/síntesis química , Relación Estructura-Actividad , Estructura Molecular , Relación Dosis-Respuesta a Droga , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química
5.
J Med Chem ; 67(15): 12984-13018, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39042910

RESUMEN

Triple-negative breast cancer (TNBC) remains a treatment challenge and requires innovative therapies. Hsp90, crucial for the stability of numerous oncogenic proteins, has emerged as a promising therapeutic target. In this study, we present the optimization of the Hsp90 C-terminal domain (CTD) inhibitor TVS21. Biochemical methods, NMR binding studies, and molecular modeling were employed to investigate the binding of representative analogs to Hsp90. The newly synthesized analogs showed increased antiproliferative activity in breast cancer cell lines, including the MDA-MB-231 TNBC cell line. Compounds 89 and 104 proved to be the most effective, inducing apoptosis, slowing proliferation, and degrading key oncogenic proteins without inducing a heat shock response. In vivo, compound 89 showed comparable efficacy to the clinical candidate AUY922 and a better safety profile in a TNBC xenograft model. These results highlight the promise of Hsp90 CTD inhibitors for TNBC therapy, potentially filling a significant treatment gap.


Asunto(s)
Antineoplásicos , Proteínas HSP90 de Choque Térmico , Neoplasias de la Mama Triple Negativas , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Animales , Femenino , Línea Celular Tumoral , Ratones , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto , Apoptosis/efectos de los fármacos , Ratones Desnudos , Modelos Moleculares
6.
Biomed Pharmacother ; 177: 116941, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38889640

RESUMEN

The development of new anticancer agents is one of the most urgent topics in drug discovery. Inhibition of molecular chaperone Hsp90 stands out as an approach that affects various oncogenic proteins in different types of cancer. These proteins rely on Hsp90 to obtain their functional structure, and thus Hsp90 is indirectly involved in the pathophysiology of cancer. However, the most studied ATP-competitive inhibition of Hsp90 at the N-terminal domain has proven to be largely unsuccessful clinically. Therefore, research has shifted towards Hsp90 C-terminal domain (CTD) inhibitors, which are also the focus of this study. Our recent discovery of compound C has provided us with a starting point for exploring the structure-activity relationship and optimising this new class of triazole-based Hsp90 inhibitors. This investigation has ultimately led to a library of 33 analogues of C that have suitable physicochemical properties and several inhibit the growth of different cancer types in the low micromolar range. Inhibition of Hsp90 was confirmed by biophysical and cellular assays and the binding epitopes of selected inhibitors were studied by STD NMR. Furthermore, the most promising Hsp90 CTD inhibitor 5x was shown to induce apoptosis in breast cancer (MCF-7) and Ewing sarcoma (SK-N-MC) cells while inducing cause cell cycle arrest in MCF-7 cells. In MCF-7 cells, it caused a decrease in the levels of ERα and IGF1R, known Hsp90 client proteins. Finally, 5x was tested in zebrafish larvae xenografted with SK-N-MC tumour cells, where it limited tumour growth with no obvious adverse effects on normal zebrafish development.


Asunto(s)
Antineoplásicos , Apoptosis , Proteínas HSP90 de Choque Térmico , Triazoles , Pez Cebra , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Triazoles/farmacología , Triazoles/química , Triazoles/síntesis química , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Relación Estructura-Actividad , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Células MCF-7 , Proliferación Celular/efectos de los fármacos
7.
Database (Oxford) ; 20232023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37290059

RESUMEN

We introduce a protein-ligand binding database (PLBD) that presents thermodynamic and kinetic data of reversible protein interactions with small molecule compounds. The manually curated binding data are linked to protein-ligand crystal structures, enabling structure-thermodynamics correlations to be determined. The database contains over 5500 binding datasets of 556 sulfonamide compound interactions with the 12 catalytically active human carbonic anhydrase isozymes defined by fluorescent thermal shift assay, isothermal titration calorimetry, inhibition of enzymatic activity and surface plasmon resonance. In the PLBD, the intrinsic thermodynamic parameters of interactions are provided, which account for the binding-linked protonation reactions. In addition to the protein-ligand binding affinities, the database provides calorimetrically measured binding enthalpies, providing additional mechanistic understanding. The PLBD can be applied to investigations of protein-ligand recognition and could be integrated into small molecule drug design. Database URL https://plbd.org/.


Asunto(s)
Inhibidores de Anhidrasa Carbónica , Anhidrasas Carbónicas , Humanos , Ligandos , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/metabolismo , Termodinámica , Anhidrasas Carbónicas/química , Anhidrasas Carbónicas/metabolismo , Unión Proteica
8.
Drug Discov Today ; 27(8): 2076-2079, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35577233

RESUMEN

The thermal shift assay is one of the most universal techniques to determine protein-ligand affinities ranging from millimolar to picomolar levels in a single ligand dosing experiment. However, the complexity of thermodynamic data analysis leads to an underuse of this technique. We have developed a user-friendly, open-source, free online analysis software to study any protein-ligand interaction thermal shift data and yield a comprehensive thermodynamic characterization of the binding reaction.


Asunto(s)
Proteínas , Fenómenos Biofísicos , Ligandos , Unión Proteica , Proteínas/química , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA