Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Curr Opin Chem Biol ; 1(3): 309-15, 1997 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9667867

RESUMEN

The past year has witnessed a major advance in the study of polyketide and nonribosomal peptide biosynthesis with the identification of the phosphopantetheinyl transferase enzyme family, enzymes required to produce active, post-translationally modified polyketide and peptide synthases. Phosphopantetheinyl transferases required for fatty acid, peptide and siderophore biosynthesis have been characterized and a consensus sequence noted in order to facilitate future identification of additional proteins catalyzing phosphopantetheinyl transfer.


Asunto(s)
Complejos Multienzimáticos/metabolismo , Procesamiento Proteico-Postraduccional , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Ácidos Grasos/biosíntesis , Péptidos/metabolismo
2.
Chem Biol ; 4(1): 17-24, 1997 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9070424

RESUMEN

INTRODUCTION: The polyketide natural products are assembled by a series of decarboxylation/condensation reactions of simple carboxylic acids catalyzed by polyketide synthase (PKS) complexes. The growing chain is assembled on acyl carrier protein (ACP), an essential component of the PKS. ACP requires posttranslational modification on a conserved serine residue by covalent attachment of a 4'-phosphopantetheine (P-pant) cofactor to yield active holo-ACP. When ACPs of Streptomyces type II aromatic PKS are overproduced in E. coli, however, typically little or no active holo-ACP is produced, and the ACP remains in the inactive apo-form. RESULTS: We demonstrate that E. coli holo-ACP synthase (ACPS), a fatty acid biosynthesis enzyme, can catalyze P-pant transfer in vitro to the Streptomyces PKS ACPs required for the biosynthesis of the polyketide antibiotics granaticin, frenolicin, oxytetracycline and tetracenomycin. The catalytic efficiency of this P-pant transfer reaction correlates with the overall negative charge of the ACP substrate. Several coenzyme A analogs, modified in the P-pant portion of the molecule, are likewise able to serve as substrates in vitro for ACPS. CONCLUSIONS: E coli ACPS can serve as a useful reagent for the preparation of holo-forms of Streptomyces ACPs as well as holo-ACPs with altered phosphopantetheine moieties. Such modified ACPs should prove useful for studying the role of particular ACPs and the phosphopantetheine cofactor in the subsequent reactions of polyketide and fatty acid biosynthesis.


Asunto(s)
Proteína Transportadora de Acilo/metabolismo , Coenzima A/metabolismo , Escherichia coli/enzimología , Streptomyces/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Antibacterianos/metabolismo , Clonación Molecular , Cartilla de ADN , Estructura Molecular , Complejos Multienzimáticos/metabolismo , Panteteína/análogos & derivados , Panteteína/metabolismo , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Transferasas (Grupos de Otros Fosfatos Sustitutos)/biosíntesis , Transferasas (Grupos de Otros Fosfatos Sustitutos)/aislamiento & purificación
3.
Chem Biol ; 3(11): 923-36, 1996 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-8939709

RESUMEN

BACKGROUND: All polyketide synthases, fatty acid synthases, and non-ribosomal peptide synthetases require posttranslational modification of their constituent acyl carrier protein domain(s) to become catalytically active. The inactive apoproteins are converted to their active holo-forms by posttranslational transfer of the 4'-phosphopantetheinyl (P-pant) moiety of coenzyme A to the sidechain hydroxyl of a conserved serine residue in each acyl carrier protein domain. The first P-pant transferase to be cloned and characterized was the recently reported Escherichia coli enzyme ACPS, responsible for apo to holo conversion of fatty acid synthase. Surprisingly, initial searches of sequence databases did not reveal any proteins with significant peptide sequence similarity with ACPS. RESULTS: Through refinement of sequence alignments that indicated low level similarity with the ACPS peptide sequence, we identified two consensus motifs shared among several potential ACPS homologs. This has led to the identification of a large family of proteins having 12-22 % similarity with ACPS, which are putative P-pant transferases. Three of these proteins, E. coli EntD and o195, and B. subtilis Sfp, have been overproduced, purified and found to have P-pant transferase activity, confirming that the observed low level of sequence homology correctly predicted catalytic function. Three P-pant transferases are now known to be present in E. coli (ACPS, EntD and o195); ACPS and EntD are specific for the activation of fatty acid synthase and enterobactin synthetase, respectively. The apo-protein substrate for o195 has not yet been identified. Sfp is responsible for the activation of the surfactin synthetase. CONCLUSIONS: The specificity of ACPS and EntD for distinct P-pant-requiring enzymes suggests that each P-pant-requiring synthase has its own partner enzyme responsible for apo to holo activation of its acyl carrier domains. This is the first direct evidence that in organisms containing multiple P-pant-requiring pathways, each pathway has its own posttranslational modifying activity.


Asunto(s)
Transferasas/química , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Transferasas/metabolismo , Valina/metabolismo
4.
Chem Biol ; 5(10): 573-86, 1998 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9818149

RESUMEN

BACKGROUND: Virulence in the pathogenic bacterium Yersinia pestis, causative agent of bubonic plague, has been correlated with the biosynthesis and transport of an iron-chelating siderophore, yersiniabactin, which is induced under iron-starvation conditions. Initial DNA sequencing suggested that this system is highly conserved among the pathogenic Yersinia. Yersiniabactin contains a phenolic group and three five-membered thiazole heterocycles that serve as iron ligands. RESULTS: The entire Y. pestis yersiniabactin region has been sequenced. Sequence analysis of yersiniabactin biosynthetic regions (irp2-ybtE and ybtS) reveals a strategy for siderophore production using a mixed polyketide synthase/nonribosomal peptide synthetase complex formed between HMWP1 and HMWP2 (encoded by irp1 and irp2). The complex contains 16 domains, five of them variants of phosphopantetheine-modified peptidyl carrier protein or acyl carrier protein domains. HMWP1 and HMWP2 also contain methyltransferase and heterocyclization domains. Mutating ybtS revealed that this gene encodes a protein essential for yersiniabactin synthesis. CONCLUSIONS: The HMWP1 and HMWP2 domain organization suggests that the yersiniabactin siderophore is assembled in a modular fashion, in which a series of covalent intermediates are passed from the amino terminus of HMWP2 to the carboxyl terminus of HMWP1. Biosynthetic labeling studies indicate that the three yersiniabactin methyl moieties are donated by S-adenosylmethionine and that the linker between the thiazoline and thiazolidine rings is derived from malonyl-CoA. The salicylate moiety is probably synthesized using the aromatic amino-acid biosynthetic pathway, the final step of which converts chorismate to salicylate. YbtS might be necessary for converting chorismate to salicylate.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Complejos Multienzimáticos/metabolismo , Fenoles , Peste/metabolismo , Sideróforos/biosíntesis , Tiazoles , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa , Proteínas Bacterianas/química , Secuencia de Bases , Cartilla de ADN , Proteínas de Unión a Hierro , Datos de Secuencia Molecular , Proteínas de Unión Periplasmáticas , Ácido Salicílico/metabolismo , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Virulencia , Yersinia pestis/metabolismo , Yersinia pestis/patogenicidad
5.
Chem Biol ; 6(6): 385-400, 1999 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10375542

RESUMEN

BACKGROUND: EntF is a 142 kDa four domain (condensation-adenylation-peptidyl carrier protein-thioesterase) nonribosomal peptide synthetase (NRPS) enzyme that assembles the Escherichia coli N-acyl-serine trilactone siderophore enterobactin from serine, dihydroxybenzoate (DHB) and ATP with three other enzymes (EntB, EntD and EntE). To assess how EntF forms three ester linkages and cyclotrimerizes the covalent acyl enzyme DHB-Ser-S-PCP (peptidyl carrier protein) intermediate, we mutated residues of the proposed catalytic Ser-His-Asp triad of the thioesterase (TE) domain. RESULTS: The Ser1138-->Cys mutant (kcat decreased 1000-fold compared with wild-type EntF) releases both enterobactin (75%) and linear (DHB-Ser)2 dimer (25%) as products. The His 1271-->Ala mutant (kcat decreased 10,000-fold compared with wild-type EntF) releases only enterobactin, but accumulates both DHB-Ser-O-TE and (DHB-Ser)2-O-TE acyl enzyme intermediates. Electrospray ionization and Fourier transform mass spectrometry of proteolytic digests were used to analyze the intermediates. CONCLUSIONS: These results establish that the TE domain of EntF is both a cyclotrimerizing lactone synthetase and an elongation catalyst for ester-bond formation between covalently tethered DHB-Ser moieties, a new function for chain-termination TE domains found at the carboxyl termini of multimodular NRPSs and polyketide synthases.


Asunto(s)
Escherichia coli/enzimología , Péptido Sintasas/química , Péptido Sintasas/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico/genética , Enterobactina/metabolismo , Escherichia coli/genética , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Extensión de la Cadena Peptídica de Translación , Péptido Sintasas/genética , Especificidad por Sustrato
6.
Biochemistry ; 36(28): 8495-503, 1997 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-9214294

RESUMEN

In Escherichia coli, the siderophore molecule enterobactin is synthesized in response to iron deprivation by formation of an amide bond between 2,3-dihydroxybenzoate (2,3-DHB) and l-serine and formation of ester linkages between three such N-acylated serine residues. We show that EntB, previously described as the isochorismate lyase required for production of 2,3-DHB, is a bifunctional protein that also serves as an aryl carrier protein (ArCP) with a role in enterobactin assembly. EntB is phosphopantetheinylated near the C terminus in a reaction catalyzed by EntD with a kcat of 5 min-1 and a Km for apo-EntB of 6.5 microM. This holo-EntB is then acylated with 2,3-DHB in a reaction catalyzed by EntE, previously described as the 2,3-DHB-AMP ligase, with a kcat of 100 min-1 and a Km of <<1 microM for holo-EntB. The N-terminal 187 amino acids of EntB (isochorismate lyase domain) are not needed for reaction of EntB with either EntD or EntE as demonstrated by the equivalent catalytic efficiencies of the full-length EntB (residues 1-285) and the C-terminal EntB ArCP domain (residues 188-285) as substrates for both EntD and EntE.


Asunto(s)
Enterobactina/metabolismo , Proteínas de Escherichia coli , Escherichia coli/enzimología , Hidrolasas/metabolismo , Ligasas/metabolismo , Complejos Multienzimáticos/metabolismo , Transferasas/metabolismo , Acilación , Adenosina Trifosfato/metabolismo , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Hidrolasas/química , Hidroxibenzoatos/metabolismo , Cinética , Espectrometría de Masas , Estructura Molecular , Complejos Multienzimáticos/química , Panteteína/análogos & derivados , Panteteína/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Salicilatos/metabolismo , Ácido Salicílico , Homología de Secuencia de Aminoácido , Serina/metabolismo
7.
Biochemistry ; 38(19): 6171-7, 1999 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-10320345

RESUMEN

A key step in fungal biosynthesis of lysine, enzymatic reduction of alpha-aminoadipate at C6 to the semialdehyde, requires two gene products in Saccharomyces cerevisiae, Lys2 and Lys5. Here, we show that the 31-kDa Lys5 is a specific posttranslational modification catalyst, using coenzyme A (CoASH) as a cosubstrate to phosphopantetheinylate Ser880 of the 155-kDa Lys2 and activate it for catalysis. Lys2 was subcloned from S. cerevisiae and expressed in and purified from Escherichia coli as a full-length 155-kDa enzyme, as a 105-kDa adenylation/peptidyl carrier protein (A/PCP) fragment (residues 1-924), and as a 14-kDa PCP fragment (residues 809-924). The apo-PCP fragment was covalently modified to phosphopantetheinylated holo-PCP by pure Lys5 and CoASH with a Km of 1 microM and kcat of 3 min-1 for both the PCP and CoASH substrates. The adenylation domain of the A/PCP fragment activated S-carboxymethyl-L-cysteine (kcat/Km = 840 mM-1 min-1) at 16% the efficiency of L-alpha-aminoadipate in [32P]PPi/ATP exchange assays. The holo form of the A/PCP 105-kDa fragment of Lys2 covalently aminoacylated itself with [35S]S-carboxymethyl-L-cysteine. Addition of NADPH discharged the covalent acyl-S-PCP Lys2, consistent with a reductive cleavage of the acyl-S-enzyme intermediate. These results identify the Lys5/Lys2 pair as a two-component system in which Lys5 covalently primes Lys2, allowing alpha-aminoadipate reductase activity by holo-Lys2 with catalytic cycles of autoaminoacylation and reductive cleavage. This is a novel mechanism for a fungal enzyme essential for amino acid metabolism.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Lisina/biosíntesis , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/enzimología , Ácido 2-Aminoadípico/análogos & derivados , Ácido 2-Aminoadípico/metabolismo , Proteína Transportadora de Acilo/metabolismo , Aldehído Oxidorreductasas/aislamiento & purificación , Carbocisteína/metabolismo , Escherichia coli , L-Aminoadipato-Semialdehído Deshidrogenasa , NADP/metabolismo , Radioisótopos de Azufre
8.
J Bacteriol ; 183(20): 5991-6, 2001 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11566999

RESUMEN

The filamentous bacterium Streptomyces coelicolor undergoes a complicated process of morphological differentiation that begins with the formation of an aerial mycelium and culminates in sporulation. Genes required for the initiation of aerial mycelium formation have been termed bld (bald), describing the smooth, undifferentiated colonies of mutant strains. By using an insertional mutagenesis protocol that relies on in vitro transposition, we have isolated a bld mutant harboring an insertion in a previously uncharacterized gene, SCE59.12c, renamed here rsuA. The insertion mutant exhibited no measurable growth defect but failed to produce an aerial mycelium and showed a significant delay in the production of the polyketide antibiotic actinorhodin. The rsuA gene encodes an apparent anti-sigma factor and is located immediately downstream of SCE59.13c, renamed here sigU, whose product is inferred to be a member of the extracytoplasmic function subfamily of RNA polymerase sigma factors. The absence of rsuA in a strain that contained sigU caused a block in development, and the overexpression of sigU in an otherwise wild-type strain caused a delay in aerial mycelium formation. However, a strain in which both rsuA and sigU had been deleted was able to undergo morphological differentiation normally. We conclude that the rsuA-encoded anti-sigma factor is responsible for antagonizing the function of the sigma factor encoded by sigU. We also conclude that the sigU-encoded sigma factor is not normally required for development but that its uncontrolled activity obstructs morphological differentiation at an early stage.


Asunto(s)
Proteínas Bacterianas/metabolismo , Factor sigma/metabolismo , Streptomyces/citología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Diferenciación Celular , ARN Polimerasas Dirigidas por ADN , Eliminación de Gen , Prueba de Complementación Genética , Datos de Secuencia Molecular , Morfogénesis , Mutagénesis Insercional , Estrés Oxidativo , Homología de Secuencia de Aminoácido , Factor sigma/genética
9.
Biochemistry ; 37(8): 2648-59, 1998 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-9485415

RESUMEN

The siderophore molecule enterobactin, a cyclic trimeric lactone of N-(2,3-dihydroxybenzoyl)serine, is synthesized and secreted by Escherichia coli in response to iron starvation. Here we report the first reconstitution of enterobactin synthetase activity from pure protein components: holo-EntB, EntE, and holo-EntF. Holo-EntB and holo-EntF were obtained by pretreatment of apo-EntB and apo-EntF with coenzyme A and EntD, thereby eliminating the requirement for EntD in the enterobactin synthetase. The holo-EntF monomer acts as the catalyst for the formation of the three amide and three ester bonds in enterobactin using ATP, L-serine, and acyl-holo-EntB, acylated with 2,3-dihydroxybenzoate by EntE, as substrates with a turnover rate of 120-140 min-1. There is no evidence for a stable complex of the enterobactin synthetase components. Mutation of holo-EntF in the thioesterase domain at the putative active site serine residue (Ser1138 to Ala) eliminated enterobactin synthetase activity; however, the mutant holo-EntF retained the ability to adenylate serine and to autoacylate itself by thioester formation between serine and its attached phosphopantetheine cofactor. The mutant holo-EntF also appeared to slowly release N-(2, 3-dihydroxybenzoyl)serine.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli/enzimología , Ligasas/química , Ligasas/aislamiento & purificación , Complejos Multienzimáticos/química , Complejos Multienzimáticos/aislamiento & purificación , Secuencia de Bases , Sitios de Unión/genética , Cartilla de ADN/genética , Enterobactina/metabolismo , Escherichia coli/genética , Hidrolasas/química , Hidrolasas/genética , Hidrolasas/aislamiento & purificación , Ligasas/genética , Complejos Multienzimáticos/genética , Mutagénesis Sitio-Dirigida , Péptido Sintasas/química , Péptido Sintasas/genética , Péptido Sintasas/aislamiento & purificación , Mutación Puntual , Conformación Proteica , Serina/química
10.
Biochemistry ; 36(39): 11757-61, 1997 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-9305965

RESUMEN

The functional reconstitution of two purified proteins of an aromatic polyketide synthase pathway, the acyl carrier protein (ACP) and holo-ACP synthase (ACPS), is described. Holo-ACPs were enzymatically synthesized from coenzyme A and apo-ACPs using Escherichia coli ACPS. Frenolicin and granaticin holo-ACPs formed in this manner were shown to be fully functional together with the other components of the minimal actinorhodin polyketide synthase (act PKS), resulting in synthesis of the same aromatic polyketides as those formed by the act PKS in vivo. ACPS also catalyzed the transfer of acetyl-, propionyl-, butyryl-, benzoyl-, phenylacetyl-, and malonylphosphopantetheines to apo-ACPs from their corresponding coenzyme As, as detected by electrophoresis and/or mass spectrometry. A steady state kinetic study showed that acetyl-coenzyme A is as efficient an ACPS substrate as coenzyme A, with kcat and Km values of 20 min-1 and 25 microM, respectively. In contrast to acetyl-coenzyme A, enzymatically synthesized acetyl-ACPs were shown to be efficient substrates for the act PKS, indicating that acetyl-ACP is a chemically competent intermediate of aromatic polyketide biosynthesis. Together, these methods provide a valuable tool for dissecting the mechanisms and molecular recognition features of polyketide biosynthesis.


Asunto(s)
Proteína Transportadora de Acilo/metabolismo , Aciltransferasas/metabolismo , Proteínas Bacterianas , Hidrolasas Diéster Fosfóricas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Catálisis , Cinética , Modelos Químicos , Sintasas Poliquetidas , Streptomyces
11.
Biochemistry ; 37(33): 11637-50, 1998 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-9709002

RESUMEN

Pathogenic Yersinia species have been shown to synthesize a siderophore molecule, yersiniabactin, as a virulence factor during iron starvation. Here we provide the first biochemical evidence for the role of the Yersinia pestis high molecular weight protein 2 (HMWP2), a nonribosomal peptide synthetase homologue, and YbtE in the initiation of yersiniabactin biosynthesis. YbtE catalyzes the adenylation of salicylate and the transfer of this activated salicyl group to the N-terminal aryl carrier protein domain (ArCP; residues 1-100) of HMWP2. A fragment of HMWP2, residues 1-1491, can adenylate cysteine and with the resulting cysteinyl-AMP autoaminoacylate the peptidyl carrier protein domain (PCP1; residues 1383-1491) either in cis or in trans. Catalytic release of hydroxyphenylthiazoline carboxylic acid (HPT-COOH) and/or N-(hydroxyphenylthiazolinylcarbonyl)cysteine (HPT-cys) is observed upon incubation of YbtE, HMWP2 1-1491, L-cysteine, salicylate, and ATP. These products presumably arise from nucleophilic attack by water or cysteine of a stoichiometric hydroxyphenylthiazolinylcarbonyl-S-PCP1-HMWP2 intermediate. Detection of the heterocyclization capacity of HMWP2 1-1491 implies salicyl-transferring and thiazoline-forming activity for the HMWP2 condensation domain (residues 101-544) and is the first demonstration of such heterocyclization ability in a nonribosomal peptide synthetase enzyme.


Asunto(s)
Proteínas Bacterianas/metabolismo , Péptido Sintasas/metabolismo , Fenoles , Sideróforos/metabolismo , Tiazoles/metabolismo , Yersinia pestis/enzimología , Yersinia pestis/patogenicidad , Adenosina Monofosfato/metabolismo , Proteínas de la Membrana Bacteriana Externa , Proteínas Bacterianas/química , Proteínas Portadoras/metabolismo , Catálisis , Cisteína/metabolismo , Hierro/metabolismo , Proteínas de Unión a Hierro , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/metabolismo , Péptido Sintasas/química , Proteínas de Unión Periplasmáticas , Estructura Terciaria de Proteína , Virulencia
12.
Proc Natl Acad Sci U S A ; 97(17): 9642-7, 2000 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-10931952

RESUMEN

The filamentous soil bacterium Streptomyces coelicolor undergoes a complex cycle of morphological differentiation involving the formation of an aerial mycelium and the production of pigmented antibiotics. We have developed a procedure for generating insertional mutants of S. coelicolor based on in vitro transposition of a plasmid library of cloned S. coelicolor DNAs. The insertionally mutated library was introduced into S. coelicolor, and transposon insertions were recovered at widely scattered locations around the chromosome. Many of the insertions revealed previously uncharacterized genes, and several caused novel mutant phenotypes, such as altered pigment production, enhanced antibiotic sensitivity, delayed or impaired formation of aerial hyphae, and a block in spore formation. The sporulation mutant harbored an insertion in one of three adjacent genes that are apparently unique to Streptomyces but are each represented by at least 20 paralogs at dispersed locations in the chromosome. Individual members of the three families often are found grouped together in a characteristic arrangement, suggesting that they have a common function.


Asunto(s)
Genes Bacterianos/genética , Genoma Bacteriano , Mutagénesis Insercional/genética , Nebramicina/análogos & derivados , Streptomyces/crecimiento & desarrollo , Streptomyces/genética , Secuencia de Aminoácidos , Antibacterianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Secuencia de Bases , Cromosomas Bacterianos/genética , Elementos Transponibles de ADN/genética , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Familia de Multigenes/genética , Nebramicina/farmacología , Fenotipo , Mapeo Físico de Cromosoma , Pigmentos Biológicos/biosíntesis , Recombinación Genética/genética , Alineación de Secuencia , Esporas Bacterianas/citología , Esporas Bacterianas/genética , Esporas Bacterianas/crecimiento & desarrollo , Streptomyces/efectos de los fármacos , Streptomyces/metabolismo
13.
Proc Natl Acad Sci U S A ; 96(2): 447-52, 1999 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-9892653

RESUMEN

Acyclovir (ACV), like many antiviral drugs, is a nucleoside analog. In vitro, ACV triphosphate inhibits herpesvirus DNA polymerase by means of binding, incorporation into primer/template, and dead-end complex formation in the presence of the next deoxynucleoside triphosphate. However, it is not known whether this mechanism operates in vivo. To address this and other questions, we analyzed eight mutant polymerases encoded by drug-resistant viruses, each altered in a region conserved among alpha-like DNA polymerases. We measured Km and kcat values for dGTP and ACV triphosphate incorporation and Ki values of ACV triphosphate for dGTP incorporation for each mutant. Certain mutants showed increased Km values for ACV triphosphate incorporation, suggesting a defect in inhibitor binding. Other mutants showed reduced kcat values for ACV triphosphate incorporation, suggesting a defect in incorporation of inhibitor into DNA, while the rest of the mutants exhibited both altered km and kcat values. In most cases, the fold increase in Ki of ACV triphosphate for dGTP incorporation relative to wild-type polymerase was similar to fold resistance conferred by the mutation in vivo; however, one mutation conferred a much greater increase in resistance than in Ki. The effects of mutations on enzyme kinetics could be explained by using a model of an alpha-like DNA polymerase active site bound to primer/template and inhibitor. The results have implications for mechanisms of action and resistance of antiviral nucleoside analogs in vivo, in particular for the importance of incorporation into DNA and for the functional roles of conserved regions of polymerases.


Asunto(s)
Aciclovir/farmacología , ADN Polimerasa I/genética , Resistencia a Medicamentos/genética , Simplexvirus/enzimología , Antivirales/farmacología , ADN Polimerasa I/química , Nucleótidos de Desoxiguanina/metabolismo , Inhibidores Enzimáticos/farmacología , Infecciones por Herpesviridae/tratamiento farmacológico , Cinética , Modelos Moleculares , Mutación/genética , Simplexvirus/efectos de los fármacos
14.
Biochemistry ; 35(2): 579-85, 1996 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-8555230

RESUMEN

The GlmU protein is a bifunctional enzyme with both acetyltransferase and uridylyltransferase (pyrophosphorylase) activities which catalyzes the transformation of glucosamine-1-P, UTP, and acetyl-CoA to UDP-N-acetylglucosamine [Mengin-Lecreulx, D., & van Heijenoort, J. (1994) J. Bacteriol. 176, 5788-5795], a fundamental precursor in bacterial peptidoglycan biosynthesis and the source of activated N-acetylglucosamine in lipopolysaccharide biosynthesis in Gram-negative bacteria. In the work described here, the GlmU protein and truncation variants of GlmU (N- and C-terminal) were purified and kinetically characterized for substrate specificity and reaction order. It was determined that the GlmU protein first catalyzed acetyltransfer followed by uridylyltransfer. The N-terminal portion of the enzyme was capable of only uridylyltransfer, and the C-terminus catalyzed only acetyltransfer. GlmU demonstrated a 12-fold kinetic preference (kcat/Km, 3.1 x 10(5) versus 2.5 x 10(4) L.mol-1.s-1) for acetyltransfer from acetyl-CoA to glucosamine-1-P as compared to UDP-glucosamine. No detectable uridylyltransfer from UTP to glucosamine-1-P was observed in the presence of GlmU; however, the enzyme was competent in catalyzing the formation of UDP-N-acetylglucosamine from UTP and N-acetylglucosamine-1-P (kcat/Km 1.2 x 10(6) L.mol-1.s-1). A two active site model for the GlmU protein was indicated both by domain dissection experiments and by assay of the bifunctional reaction. Kinetic studies demonstrated that a pre-steady-state lag in the production of UDP-N-acetylglucosamine from acetyl-CoA, UTP, and glucosamine-1-P was due to the release and accumulation of steady-state levels of the intermediate N-acetylglucosamine-1-P.


Asunto(s)
Escherichia coli/enzimología , Nucleotidiltransferasas/metabolismo , Uridina Difosfato N-Acetilglucosamina/biosíntesis , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Cartilla de ADN/genética , Escherichia coli/genética , Cinética , Modelos Químicos , Datos de Secuencia Molecular , Nucleotidiltransferasas/química , Nucleotidiltransferasas/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Especificidad por Sustrato
15.
Mol Gen Genet ; 257(6): 641-8, 1998 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-9604887

RESUMEN

The nodulation protein NodF of Rhizobium shows 25% identity to acyl carrier protein (ACP) from Escherichia coli (encoded by the gene acpP). However, NodF cannot be functionally replaced by AcpP. We have investigated whether NodF is a substrate for various E. coli enzymes which are involved in the synthesis of fatty acids. NodF is a substrate for the addition of the 4'-phosphopantetheine prosthetic group by holo-ACP synthase. The Km value for NodF is 61 microM, as compared to 2 microM for AcpP. The resulting holo-NodF serves as a substrate for coupling of malonate by malonyl-CoA:ACP transacylase (MCAT) and for coupling of palmitic acid by acyl-ACP synthetase. NodF is not a substrate for beta-keto-acyl ACP synthase III (KASIII), which catalyses the initial condensation reaction in fatty acid biosynthesis. A chimeric gene was constructed comprising part of the E. coli acpP gene and part of the nodF gene. Circular dichroism studies of the chimeric AcpP-NodF (residues 1-33 of AcpP fused to amino acids 43-93 of NodF) protein encoded by this gene indicate a similar folding pattern to that of the parental proteins. Enzymatic analysis shows that AcpP-NodF is a substrate for the enzymes holo-ACP synthase, MCAT and acyl-ACP synthetase. Biological complementation studies show that the chimeric AcpP-NodF gene is able functionally to replace NodF in the root nodulation process in Vicia sativa. We therefore conclude that NodF is a specialized acyl carrier protein whose specific features are encoded in the C-terminal region of the protein. The ability to exchange domains between such distantly related proteins without affecting conformation opens exciting possibilities for further mapping of the functional domains of acyl carrier proteins (i. e., their recognition sites for many enzymes).


Asunto(s)
Proteína Transportadora de Acilo/genética , Proteínas Bacterianas/fisiología , Escherichia coli/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Rhizobium/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Prueba de Complementación Genética , Datos de Secuencia Molecular , Conformación Proteica , Proteínas Recombinantes de Fusión/química , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA