Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Stroke ; 50(11): 3004-3012, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31558144

RESUMEN

Background and Purpose- Coagulation factor XI (FXI) is a novel target for antithrombotic therapy addressed by various therapeutic modalities currently in clinical development. The expected magnitude of thrombotic event reduction mediated by targeting FXI is unclear. Methods- We analyzed the association of 2 common genetic variants, which alter levels of FXI, with a range of human phenotypes. We combined variants into a genetic score standardized to a 30% increase in relative activated partial thromboplastin time, equivalent to what can be achieved with pharmacological FXI reduction. Using data from 371 695 participants in the United Kingdom Biobank and 2 large-scale genome-wide association studies, we examined the effect of this FXI score on thrombotic and bleeding end points. Results- Genetic disposition to lower FXI levels was associated with reduced risks of venous thrombosis (odds ratio, 95% CI; P value; odds ratio=0.1, 0.07-0.14; P=3×10-43) and ischemic stroke (odds ratio=0.47, 0.36-0.61; P=2×10-8) but not with major bleeding (odds ratio=0.7, 0.45-1.04; P=0.0739). The observed relative risk reductions were consistent within a range of subgroups that were at high risk for thrombosis. Consistently, we observed higher absolute risk reductions conferred by genetically lower FXI levels in high-risk subgroups, such as patients with atrial fibrillation. Conclusions- Human genetic data suggest that pharmacological inhibition of FXI may achieve considerable reductions in ischemic stroke risk without clear evidence for an associated risk of major bleeding. The quantitative framework developed can be used to support the estimation of achievable risk reductions with pharmacological modulation of FXI.


Asunto(s)
Bancos de Muestras Biológicas , Factor XI , Variación Genética , Hemorragia , Accidente Cerebrovascular , Trombosis de la Vena , Adulto , Estudios Transversales , Factor XI/genética , Factor XI/metabolismo , Femenino , Estudio de Asociación del Genoma Completo , Hemorragia/sangre , Hemorragia/genética , Genética Humana , Humanos , Masculino , Persona de Mediana Edad , Tiempo de Tromboplastina Parcial , Factores de Riesgo , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/genética , Reino Unido , Trombosis de la Vena/sangre , Trombosis de la Vena/genética
2.
J Biol Chem ; 291(34): 17772-86, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27226631

RESUMEN

Olfactory receptors, which belong to the family of G-protein-coupled receptors, are found to be ectopically expressed in non-sensory tissues mediating a variety of cellular functions. In this study we detected the olfactory receptor OR51E2 at the transcript and the protein level in human epidermal melanocytes. Stimulation of primary melanocytes with the OR51E2 ligand ß-ionone significantly inhibited melanocyte proliferation. Our results further showed that ß-ionone stimulates melanogenesis and dendritogenesis. Using RNA silencing and receptor antagonists, we demonstrated that OR51E2 activation elevated cytosolic Ca(2+) and cAMP, which could mediate the observed increase in melanin synthesis. Co-immunocytochemical stainings using a specific OR51E2 antibody revealed subcellular localization of the receptor in early endosomes associated with EEA-1 (early endosome antigen 1). Plasma membrane preparations showed that OR51E2 protein is present at the melanocyte cell surface. Our findings thus suggest that activation of olfactory receptor signaling by external compounds can influence melanocyte homeostasis.


Asunto(s)
Señalización del Calcio/fisiología , Membrana Celular/metabolismo , Epidermis/metabolismo , Melanocitos/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores Odorantes/metabolismo , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Línea Celular , AMP Cíclico/metabolismo , Endosomas/metabolismo , Células Epidérmicas , Humanos , Melanocitos/citología , Norisoprenoides/farmacología , Proteínas de Transporte Vesicular/metabolismo
3.
Exp Dermatol ; 26(7): 569-576, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28191688

RESUMEN

We identified the olfactory receptor 51E2 in human melanoma and have measured both OR51E2 mRNA and protein expression in melanoma tissue sections. qPCR analysis revealed that the receptor is upregulated in melanoma cells compared to normal melanocytes, indicating that OR51E2 may play a role in early melanoma development and progression. Activation of endogenous OR51E2 in cultured cells derived from metastatic and vertical-growth phase (VGP) by its ligand ß-ionone results in an increase in the intracellular Ca2+ concentration. RNAi experiments showed that the ß-ionone-induced Ca2+ signal depends on the activation of OR51E2. Furthermore, OR51E2 activation inhibits the growth of VGP melanoma cells via apoptotic processes. Cell motility assays revealed that treatment with ß-ionone decreases the migration of VGP melanoma cells. Overall, our data demonstrates that OR51E2 is involved in the regulation of cell proliferation and migration, suggesting that it may serve as a novel target for melanoma therapy.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Melanoma/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores Odorantes/metabolismo , Neoplasias Cutáneas/metabolismo , Calcio/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Humanos , Ligandos , Melanocitos/metabolismo , Metástasis de la Neoplasia , Norisoprenoides/química , Reacción en Cadena de la Polimerasa , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Resultado del Tratamiento
4.
Biochim Biophys Acta ; 1854(6): 632-40, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25219547

RESUMEN

The prostate-specific G-protein-coupled receptor 1 (PSGR1) is an olfactory receptor specifically expressed in the prostate gland. PSGR1 expression is elevated both in benign prostatic hyperplasia tissue and in prostate cancer. Stimulation of PSGR1 by the odorant ß-ionone leads to an increase in the intracellular Ca(2+) concentration, activation of mitogen-activated protein (MAP) kinases and a decrease in prostate cancer cell proliferation. To further extend our knowledge about PSGR1 signaling in prostate cancer cells, we performed a quantitative phosphoproteomics study using stable isotope labeling by amino acids in cell culture and mass spectrometry. We report 51 differentially regulated phosphorylation sites in 24 proteins with functions in cytoskeletal remodeling, signaling and ion transport. Activation of PSGR1 evoked an increase in intracellular pH mediated by the sodium/hydrogen exchanger NHE1. Furthermore, we report the protein tyrosine kinase Pyk2 as a central effector of PSGR1 signaling cascades in LNCaP cells. Our data show that phosphorylation of p38 MAP kinase is triggered by Pyk2. In addition, we confirmed dephosphorylation of the tumor suppressor protein N-myc downstream regulated gene 1 (NDRG1) at Ser330 downstream of Pyk2. Since NDRG1 impacts oncogenic signaling pathways interfering with tumor progression, we suggest that the Pyk2-NDRG1 axis is possibly involved in conveying the anti-proliferative effect of ß-ionone in prostate cancer cells. This article is part of a Special Issue entitled: Medical Proteomics.


Asunto(s)
Quinasa 2 de Adhesión Focal/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Neoplasias de la Próstata/metabolismo , Receptores Odorantes/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Quinasa 2 de Adhesión Focal/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Proteínas de Neoplasias/genética , Norisoprenoides/farmacología , Fosfoproteínas/genética , Fosforilación/efectos de los fármacos , Fosforilación/genética , Neoplasias de la Próstata/genética , Receptores Odorantes/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Ther Innov Regul Sci ; 57(4): 769-782, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37195515

RESUMEN

During the last few years, the pharmaceutical industry has adopted digital technologies/digital health technology (DHT) to improve the drug development process and the commercialization of new products. Technological advances are strongly supported by both the US-FDA and the EMA, but the regulatory landscape in the US seems to be more suitable to promote innovation in the digital health sector (e.g. Cures Act). In contrast, the new Medical Device Regulation sets high hurdles for Medical Device software to pass regulatory scrutiny.On both sides of the Atlantic, a digital tool must be fit-for-purpose for the intended use in the clinical drug trial. Irrespective of its status as a Medical Device, at least the basic safety and performance requirements according to local regulations should be met, quality system and surveillance requirements should be fulfilled, and the sponsor must ensure conformity with GxP and the local data privacy and cybersecurity legislations.There is an overlap in technical and clinical validation for drug development tool qualification in both regions to ensure that the digital tools deliver reliable data with tangible clinical benefits. Based on an analysis of the regulatory framework of the FDA and the EMA, this study proposes regulatory strategies for a global pharma company: It would be prudent for drug development companies to a) use approved solutions or b) consider qualification of drug development tools early and in parallel to clinical development. Early engagement with the FDA and the EMA/CA is recommended to define evidentiary standards and corresponding regulatory pathways for different contexts-of-use and to clarify regulator's expectations as to what extent data collected by digital tools are acceptable to support marketing authorization applications (MAA).Hence a harmonization of the partly disparate regulatory requirements in the US and the EU accompanied by further development of the regulatory landscape in the EU, could further foster the use of digital tools in drug clinical development. The outlook for the use of digital tools in clinical trials is hopeful.


Asunto(s)
Desarrollo de Medicamentos , Industria Farmacéutica , Estados Unidos , United States Food and Drug Administration , Evaluación de Medicamentos , Programas Informáticos
6.
J Biol Chem ; 286(15): 13184-92, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21349844

RESUMEN

Ca(2+) homeostasis plays a critical role in a variety of cellular processes. We showed previously that stimulation of the prostate-specific G protein-coupled receptor (PSGR) enhances cytosolic Ca(2+) and inhibits proliferation of prostate cells. Here, we analyzed the signaling mechanisms underlying the PSGR-mediated Ca(2+) increase. Using complementary molecular, biochemical, electrophysiological, and live-cell imaging techniques, we found that endogenous Ca(2+)-selective transient receptor potential vanilloid type 6 (TRPV6) channels are critically involved in the PSGR-induced Ca(2+) signal. Biophysical characterization of the current activated by PSGR stimulation revealed characteristic properties of TRPV6. The molecular identity of the involved channel was confirmed using RNA interference targeting TrpV6. TRPV6-mediated Ca(2+) influx depended on Src kinase activity. Src kinase activation occurred independently of G protein activation, presumably by direct interaction with PSGR. Taken together, we report that endogenous TRPV6 channels are activated downstream of a G protein-coupled receptor and present the first physiological characterization of these channels in situ.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canales Catiónicos TRPV/metabolismo , Familia-src Quinasas/metabolismo , Canales de Calcio/genética , Línea Celular , Activación Enzimática/fisiología , Humanos , Masculino , Próstata/citología , Próstata/metabolismo , Interferencia de ARN , Receptores Acoplados a Proteínas G/genética , Canales Catiónicos TRPV/genética , Familia-src Quinasas/genética
8.
PLoS One ; 12(8): e0182147, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28763484

RESUMEN

We performed an analysis of possible mechanisms of ligand recognition in the human nose. The analysis is based on in vivo odor threshold determination and in vitro Ca2+ imaging assays with a C/Si/Ge/Sn switch strategy applied to the compounds Lilial and Bourgeonal, to differentiate between different molecular mechanisms of odorant detection. Our results suggest that odorant detection under threshold conditions is mainly based on the molecular shape, i.e. the van der Waals surface, and electrostatics of the odorants. Furthermore, we show that a single olfactory receptor type is responsible for odor detection of Bourgeonal at the threshold level in humans in vivo. Carrying out a QM analysis of vibrational energies contained in the odorants, there is no evidence for a vibration-based recognition.


Asunto(s)
Nariz/fisiología , Odorantes , Neuronas Receptoras Olfatorias/fisiología , Olfato , Calcio/química , Simulación por Computador , Humanos , Ligandos , Relación Estructura-Actividad Cuantitativa , Receptores Odorantes/fisiología , Análisis de Regresión , Umbral Sensorial , Propiedades de Superficie , Temperatura
9.
Sci Rep ; 7(1): 16007, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29167480

RESUMEN

We analysed the ligand-based activation mechanism of the prostate-specific G-protein coupled receptor (PSGR), which is an olfactory receptor that mediates cellular growth in prostate cancer cells. Furthermore, it is an olfactory receptor with a known chemically near identic antagonist/agonist pair, α- and ß-ionone. Using a combined theoretical and experimental approach, we propose that this receptor is activated by a ligand-induced rearrangement of a protein-internal hydrogen bond network. Surprisingly, this rearrangement is not induced by interaction of the ligand with the network, but by dynamic van der Waals contacts of the ligand with the involved amino acid side chains, altering their conformations and intraprotein connectivity. Ligand recognition in this GPCR is therefore highly stereo selective, but seemingly lacks any ligand recognition via polar contacts. A putative olfactory receptor-based drug design scheme will have to take this unique mode of protein/ligand action into account.


Asunto(s)
Próstata/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Humanos , Enlace de Hidrógeno , Masculino , Receptores Acoplados a Proteínas G/química , Receptores Odorantes/química , Receptores Odorantes/metabolismo
10.
Front Physiol ; 8: 888, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29249973

RESUMEN

The odorant receptor 51E2 (OR51E2), which is well-characterized in prostate cancer cells and epidermal pigment cells, was identified for the first time as the most highly expressed OR in human fetal and adult retinal pigment epithelial (RPE) cells. Immunofluorescence staining and Western blot analysis revealed OR51E2 localization throughout the cytosol and in the plasma membrane. Additionally, immunohistochemical staining of diverse layers of the eye showed that the expression of OR51E2 is restricted to the pigment cells of the RPE and choroid. The results of Ca2+-imaging experiments demonstrate that activation of OR51E2 triggers a Ca2+ dependent signal pathway in RPE cells. Downstream signaling of OR51E2 involves the activation of adenylyl cyclase, ERK1/2 and AKT. The activity of these protein kinases likely accounts for the demonstrated increase in the migration and proliferation of RPE cells upon stimulation with the OR51E2 ligand ß-ionone. These findings suggest that OR51E2 is involved in the regulation of RPE cell growth. Thus, OR51E2 represents a potential target for the treatment of proliferative disorders.

11.
Front Cell Neurosci ; 11: 03, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28174521

RESUMEN

Several studies have demonstrated that the expression of odorant receptors (ORs) occurs in various tissues. These findings have served as a basis for functional studies that demonstrate the potential of ORs as drug targets for a clinical application. To the best of our knowledge, this report describes the first evaluation of the mRNA expression of ORs and the localization of OR proteins in the human retina that set a stage for subsequent functional analyses. RNA-Sequencing datasets of three individual neural retinae were generated using Next-generation sequencing and were compared to previously published but reanalyzed datasets of the peripheral and the macular human retina and to reference tissues. The protein localization of several ORs was investigated by immunohistochemistry. The transcriptome analyses detected an average of 14 OR transcripts in the neural retina, of which OR6B3 is one of the most highly expressed ORs. Immunohistochemical stainings of retina sections localized OR2W3 to the photosensitive outer segment membranes of cones, whereas OR6B3 was found in various cell types. OR5P3 and OR10AD1 were detected at the base of the photoreceptor connecting cilium, and OR10AD1 was also localized to the nuclear envelope of all of the nuclei of the retina. The cell type-specific expression of the ORs in the retina suggests that there are unique biological functions for those receptors.

12.
Oncotarget ; 7(30): 48231-48249, 2016 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-27374083

RESUMEN

The development of prostate cancer (PCa) is regulated by the androgen-dependent activity of the androgen receptor (AR). Androgen-deprivation therapy (ADT) is therefore the gold standard treatment to suppress malignant progression of PCa. Nevertheless, due to the development of castration resistance, recurrence of disease after initial response to ADT is a major obstacle to successful treatment. As G-protein coupled receptors play a fundamental role in PCa physiology, they might represent promising alternative or combinatorial targets for advanced diseases. Here, we verified gene expression of the olfactory receptors (ORs) OR51E1 [prostate-specific G-protein coupled receptor 2 (PSGR2)] and OR51E2 (PSGR) in human PCa tissue by RNA-Seq analysis and RT-PCR and elucidated the subcellular localization of both receptor proteins in human prostate tissue. The OR51E1 agonist nonanoic acid (NA) leads to the phosphorylation of various protein kinases and growth suppression of the PCa cell line LNCaP. Furthermore, treatment with NA causes reduction of androgen-mediated AR target gene expression. Interestingly, NA induces cellular senescence, which coincides with reduced E2F1 mRNA levels. In contrast, treatment with the structurally related compound 1-nonanol or the OR2AG1 agonist amyl butyrate, neither of which activates OR51E1, did not lead to reduced cell growth or an induction of cellular senescence. However, decanoic acid, another OR51E1 agonist, also induces cellular senescence. Thus, our results suggest the involvement of OR51E1 in growth processes of PCa cells and its impact on AR-mediated signaling. These findings provide novel evidences to support the functional importance of ORs in PCa pathogenesis.


Asunto(s)
Proteínas de Neoplasias/metabolismo , Neoplasias de la Próstata/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Línea Celular Tumoral , Proliferación Celular/fisiología , Senescencia Celular , Progresión de la Enfermedad , Humanos , Masculino , Proteínas de Neoplasias/biosíntesis , Fosforilación , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/metabolismo , Receptores Acoplados a Proteínas G/biosíntesis , Transducción de Señal , Transfección
13.
Front Cell Neurosci ; 8: 266, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25309319

RESUMEN

Pannexin 1 (Panx1), the most extensively investigated member of a channel-forming protein family, is able to form pores conducting molecules up to 1.5 kDa, like ATP, upon activation. In the olfactory epithelium (OE), ATP modulates olfactory responsiveness and plays a role in proliferation and differentiation of olfactory sensory neurons (OSNs). This process continuously takes place in the OE, as neurons are replaced throughout the whole lifespan. The recent discovery of Panx1 expression in the OE raises the question whether Panx1 mediates ATP release responsible for modulating chemosensory function. In this study, we analyzed pannexin expression in the OE and a possible role of Panx1 in olfactory function using a Panx1(-/-) mouse line with a global ablation of Panx1. This mouse model has been previously used to investigate Panx1 functions in the retina and adult hippocampus. Here, qPCR, in-situ hybridization, and immunohistochemistry (IHC) demonstrated that Panx1 is expressed in axon bundles deriving from sensory neurons of the OE. The localization, distribution, and expression of major olfactory signal transduction proteins were not significantly altered in Panx1(-/-) mice. Further, functional analysis of Panx1(-/-) animals does not reveal any major impairment in odor perception, indicated by electroolfactogram (EOG) measurements and behavioral testing. However, ATP release evoked by potassium gluconate application was reduced in Panx1(-/-) mice. This result is consistent with previous reports on ATP release in isolated erythrocytes and spinal or lumbar cord preparations from Panx1(-/-) mice, suggesting that Panx1 is one of several alternative pathways to release ATP in the olfactory system.

14.
J Biol Chem ; 284(24): 16218-16225, 2009 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-19389702

RESUMEN

Olfactory receptors (ORs) are expressed not only in the sensory neurons of the olfactory epithelium, where they detect volatile substances, but also in various other tissues where their potential functions are largely unknown. Here, we report the physiological characterization of human OR51E2, also named prostate-specific G-protein-coupled receptor (PSGR) due to its reported up-regulation in prostate cancer. We identified androstenone derivatives as ligands for the recombinant receptor. PSGR can also be activated with the odorant beta-ionone. Activation of the endogenous receptor in prostate cancer cells by the identified ligands evoked an intracellular Ca2+ increase. Exposure to beta-ionone resulted in the activation of members of the MAPK family and inhibition of cell proliferation. Our data give support to the hypothesis that because PSGR signaling could reduce growth of prostate cancer cells, specific receptor ligands might therefore be potential candidates for prostate cancer treatment.


Asunto(s)
Androsterona/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptores Odorantes/metabolismo , Androsterona/farmacología , Calcio/metabolismo , División Celular/efectos de los fármacos , División Celular/fisiología , Línea Celular Tumoral , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Riñón/citología , Ligandos , Masculino , Proteínas de Neoplasias/genética , Norisoprenoides/metabolismo , Norisoprenoides/farmacología , Mucosa Olfatoria/citología , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Próstata/citología , Receptores Odorantes/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA