Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Allergy ; 77(3): 966-978, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34314538

RESUMEN

BACKGROUND: Contact sensitizers may interfere with correct protein folding. Generation of un-/misfolded proteins can activate the IRE-1 or PERK signaling pathways initiating the unfolded protein response (UPR) and thereby determine inflammatory immune responses. We have analyzed the effect of sensitizers with different potencies on the induction of UPR activation/inhibition and the subsequent generation of a pro-inflammatory micromilieu in vitro as well as the effect of UPR modulation on the inflammatory response in the murine contact hypersensitivity (CHS) in vivo. METHODS: Semi-quantitative and quantitative PCR, fluorescence microscopy, ELISA, NF-κB activation and translocation assays, DC/keratinocyte co-culture assay, FACS, and in vivo CHS experiments were performed. RESULTS: Sensitizers and irritants activate IRE-1 and PERK in murine and human keratinocytes. Synergistic effects occur after combination of different weak sensitizers / addition of irritants. Moreover, tolerogenic dinitrothiocyanobenzene can be converted into a strong sensitizer by pre-activation of the UPR. Blocking UPR signaling results in decreased NF-κB activation and cytokine production in keratinocytes and in activation marker downregulation in a HaCaT/THP-1 co-culture. Interestingly, not only systemic but also topical application of UPR inhibitors abrogates CHS responses in vivo. CONCLUSION: These observations highlight an important role of the UPR in determination of the inflammatory response in vitro and in vivo further underlining the importance of tissue stress and damage responses in the development of ACD and provide mechanistically based concepts as a basis for the development of new therapeutic approaches to treat allergic contact dermatitis.


Asunto(s)
Dermatitis Alérgica por Contacto , Irritantes , Animales , Dermatitis Alérgica por Contacto/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , FN-kappa B , Proteínas Serina-Treonina Quinasas
2.
Molecules ; 26(19)2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34641358

RESUMEN

Psoriasis is a chronic inflammatory skin disease characterized by hyperproliferation of keratinocytes and a pro-inflammatory milieu in the skin. While patients with moderate to severe psoriasis are treated using targeted therapies (small molecules and monoclonal antibodies), patients suffering from milder forms are still in need of effective topical products without adverse effects. Antimony compounds (ACs) are regularly used as anti-inflammatory compounds in traditional and anthroposophic medicine and as antiprotozoan drugs. Here, we examined the effect of metallic antimony, natural antimony(III) sulfide and potassium antimonyl(III) tartrate in vitro on psoriasis-like keratinocytes and the human dendritic cell line THP-1 using qPCR, immunocytochemistry, ELISA and flow cytometry. In psoriatic keratinocytes, ACs inhibited the overexpression of the antimicrobial peptide ß-defensin 2 and glucose transporter 1, as well as the hyperproliferation marker keratin 17. Furthermore, ACs mediated anti-inflammatory effects by reducing nuclear translocation of the p65 subunit of NF-κB and pSTAT3 and inhibited pro-inflammatory cytokine secretion by keratinocytes. In addition, ACs displayed anti-psoriatic effects by reducing the activation of IFN-α-treated THP-1 cells as well as the expression of the psoriasis-promoting master cytokine IL-23 by these cells. While all ACs showed anti-psoriatic effects, the most prominent results were seen with potassium antimonyl(III) tartrate. In summary, ACs display numerous anti-psoriatic effects in vitro at subtoxic concentrations. We conclude that ACs are interesting compounds for the topical treatment of psoriasis that warrant further investigation in clinical studies.


Asunto(s)
Antiinflamatorios/farmacología , Antimonio/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Interleucina-23/metabolismo , Queratinocitos/efectos de los fármacos , Psoriasis/tratamiento farmacológico , Biomarcadores , Diferenciación Celular , Proliferación Celular , Humanos , Técnicas In Vitro , Queratinocitos/metabolismo , Psoriasis/metabolismo , Psoriasis/patología
3.
Molecules ; 25(8)2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316273

RESUMEN

Gentiana lutea is a bitter herb that is traditionally used to improve gastric disorders. Recently, we have shown that Gentiana lutea extract (GE) also modulates the lipid metabolism of human keratinocytes in vitro and in vivo. In the present study, we investigated the role of GE on ceramide synthesis in human primary keratinocytes (HPKs) and psoriasis-like keratinocytes. We could demonstrate that GE increased the concentrations of glucosylceramides and the ceramide AS/AdS subclass without affecting the overall ceramide content in HPKs. The expression of ceramide synthase 3 (CERS3) and elongases (ELOVL1 and 4) was reduced in psoriasis lesions compared to healthy skin. Psoriasis-like HPKs, generated by stimulating HPKs with cytokines that are involved in the pathogenesis of psoriasis (IL-17, TNF-α, IL-22 and IFN-γ) showed increased levels of IL-6, IL-8 and increased expression of DEFB4A, as well as decreased expression of ELOVL4. The treatment with GE partly rescued the reduced expression of ELOVL4 in psoriasis-like HPKs and augmented CERS3 expression. This study has shown that GE modulates ceramide synthesis in keratinocytes. Therefore, GE might be a novel topical treatment for skin diseases with an altered lipid composition such as psoriasis.


Asunto(s)
Ceramidas/metabolismo , Gentiana/química , Queratinocitos/citología , Extractos Vegetales/farmacología , Psoriasis/metabolismo , Estudios de Casos y Controles , Células Cultivadas , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Extractos Vegetales/química , Cultivo Primario de Células , Psoriasis/genética , Esfingosina N-Aciltransferasa/genética , Esfingosina N-Aciltransferasa/metabolismo
5.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35337147

RESUMEN

We demonstrated the anti-inflammatory and anti-oxidative effects of Humulus lupulus (HL) extract on solar simulator-irradiated primary human keratinocytes (PHKs) by analyzing ERK and p38 MAPK phosphorylation and production of IL-6 and IL-8. The anti-inflammatory effect of topically applied HL was further tested in vivo on human skin. To this end, we developed an oil-in-water (O/W) and a water-in-oil (W/O) cream with a lipid content of 40%. The anti-inflammatory effect of 1% HL extract incorporated in these two vehicles was assessed in a randomized, prospective, placebo controlled, double-blind UVB erythema study with 40 healthy volunteers. Hydrocortisone acetate (HCA) in the corresponding vehicle served as positive control. Surprisingly, both HL and HCA were only effective in the O/W system but not in the W/O formulation. Release studies using vertical diffusion cells (Franz cells) revealed that HCA was released in much higher amounts from the O/W cream compared to the W/O formulation. In summary, we have shown that 1% HL extract exerts anti-inflammatory effects comparable to 1% HCA, but only when incorporated in our O/W cream. Our findings confirm the critical role of the vehicle in topical anti-inflammatory systems.

6.
Biofactors ; 47(2): 170-180, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33368702

RESUMEN

Luteolin belongs to the group of flavonoids and can be found in flowers, herbs, vegetables and spices. It plays an important role in defending plants, for example against UV radiation by partially absorbing UVA and UVB radiation. Thus, luteolin can also decrease adverse photobiological effects in the skin by acting as a first line of defense. Furthermore, anti-oxidative and anti-inflammatory activities of luteolin were described on keratinocytes and fibroblasts as well as on several immune cells (e.g., macrophages, mast cell, neutrophils, dendritic cells and T cells). Luteolin can suppress proinflammatory mediators (e.g., IL-1ß, IL-6, IL-8, IL-17, IL-22, TNF-α and COX-2) and regulate various signaling pathway (e.g., the NF-κB, JAK-STAT as well as TLR signaling pathway). In this way, luteolin modulates many inflammatory processes of the skin. The present review summarizes the recent in vitro and in vivo research on luteolin in the field of skin aging and skin cancer, wound healing as well as inflammatory skin diseases, including psoriasis, contact dermatitis and atopic dermatitis. In conclusion, luteolin might be a promising molecule for the development of topic formulations and systemic agents against inflammatory skin diseases.


Asunto(s)
Antiinflamatorios/farmacología , Inflamación/prevención & control , Luteolina/farmacología , Envejecimiento de la Piel/efectos de los fármacos , Animales , Antiinflamatorios/inmunología , Humanos , Inflamación/inmunología , Luteolina/inmunología , Ratones , Envejecimiento de la Piel/inmunología
7.
Biomolecules ; 11(3)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801280

RESUMEN

Psoriasis is a chronic inflammatory skin disease characterized by hyperproliferation of keratinocytes and expression of pro-inflammatory cytokines in the epidermis. New biological drugs were developed for the systemic treatment of moderate to severe psoriasis. However, products for the topical treatment of mild psoriasis are still required. Here, we examined the effect of natural compounds on psoriasis-like keratinocytes in vitro and ex vivo. Psoriasis-like keratinocytes were generated by treating human primary keratinocytes with the psoriasis-associated cytokines IL-17A, TNF-α and IL-22. Initially, 10 botanical extracts from Ayurvedic Medicine, Traditional Chinese Medicine, Northern American traditional medicine and Occidental Monastic Medicine were investigated using BrdU assays and IL-6 and IL-8 ELISAs. Curcuma amada, Humulus lupulus and Hypericum perforatum turned out to be the most effective plant extracts. In vitro, the plant extracts inhibited the expression of anti-microbial peptides (ß-defensin 2), the hyperproliferation marker keratin 17, the glucose transporter 1 and downregulated the nuclear translocation of NF-κB and pSTAT3. In an ex vivo psoriasis model, Humulus lupulus displayed the most prominent anti-proliferative and anti-inflammatory effect. In conclusion, among the plant extracts investigated, Humulus lupulus showed the most promising anti-psoriatic effect. It is an interesting candidate for topical psoriasis treatment that should be further studied in clinical trials.


Asunto(s)
Queratinocitos/patología , Plantas Medicinales/química , Psoriasis/patología , Línea Celular , Proliferación Celular/efectos de los fármacos , Curcuma/química , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Humulus/química , Hypericum/química , Queratinocitos/efectos de los fármacos , Modelos Biológicos , Extractos Vegetales/farmacología , Psoriasis/genética
8.
Biomedicines ; 8(2)2020 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-32046246

RESUMEN

Herbal extracts and isolated plant compounds play an increasing role in the treatment of skin disorders and wounds. Several new herbal drugs, medicinal products and cosmetic products for the treatment of various skin conditions have been developed in recent years. In this nonsystematic review, we focus on herbal drugs that were tested in controlled clinical studies or in scientifically sound preclinical studies. The herbal biomedicines are intended to treat atopic dermatitis (St. John's wort, licorice, tormentil, bitter substances, evening primrose), psoriasis (araroba tree, lace flower, barberry bark, indigo, turmeric, olibanum, St. John's wort), actinic keratosis (birch bark, petty spurge), herpes simplex (lemon balm, sage and rhubarb), rosacea (green tea, licorice, tormentil) and acne vulgaris (tea tree oil, green tea, hop), or to improve photo protection (green tea, Dyer's weed, cocoa tree, carotinoids, licorice), aesthetic dermatology (licorice, pine bark, gotu kola) and wound healing (birch bark, onion).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA