Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Physiol Endocrinol Metab ; 298(3): E622-33, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20009023

RESUMEN

Potential insulin secretagogue properties of an acetoxymethyl ester of a cAMP analog (8-pCPT-2'-O-Me-cAMP-AM) that activates the guanine nucleotide exchange factors Epac1 and Epac2 were assessed using isolated human islets of Langerhans. RT-QPCR demonstrated that the predominant variant of Epac expressed in human islets was Epac2, although Epac1 was detectable. Under conditions of islet perifusion, 8-pCPT-2'-O-Me-cAMP-AM (10 microM) potentiated first- and second-phase 10 mM glucose-stimulated insulin secretion (GSIS) while failing to influence insulin secretion measured in the presence of 3 mM glucose. The insulin secretagogue action of 8-pCPT-2'-O-Me-cAMP-AM was associated with depolarization and an increase of [Ca(2+)](i) that reflected both Ca(2+) influx and intracellular Ca(2+) mobilization in islet beta-cells. As expected for an Epac-selective cAMP analog, 8-pCPT-2'-O-Me-cAMP-AM (10 microM) failed to stimulate phosphorylation of PKA substrates CREB and Kemptide in human islets. Furthermore, 8-pCPT-2'-O-Me-cAMP-AM (10 microM) had no significant ability to activate AKAR3, a PKA-regulated biosensor expressed in human islet cells by viral transduction. Unexpectedly, treatment of human islets with an inhibitor of PKA activity (H-89) or treatment with a cAMP antagonist that blocks PKA activation (Rp-8-CPT-cAMPS) nearly abolished the action of 8-pCPT-2'-O-Me-cAMP-AM to potentiate GSIS. It is concluded that there exists a permissive role for PKA activity in support of human islet insulin secretion that is both glucose dependent and Epac regulated. This permissive action of PKA may be operative at the insulin secretory granule recruitment, priming, and/or postpriming steps of Ca(2+)-dependent exocytosis.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/análogos & derivados , Glucosa/administración & dosificación , Factores de Intercambio de Guanina Nucleótido/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Células Cultivadas , AMP Cíclico/administración & dosificación , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Humanos , Secreción de Insulina , Islotes Pancreáticos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
2.
Mol Endocrinol ; 29(7): 988-1005, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26061564

RESUMEN

cAMP-elevating agents such as the incretin hormone glucagon-like peptide-1 potentiate glucose-stimulated insulin secretion (GSIS) from pancreatic ß-cells. However, a debate has existed since the 1970s concerning whether or not cAMP signaling is essential for glucose alone to stimulate insulin secretion. Here, we report that the first-phase kinetic component of GSIS is cAMP-dependent, as revealed through the use of a novel highly membrane permeable para-acetoxybenzyl (pAB) ester prodrug that is a bioactivatable derivative of the cAMP antagonist adenosine-3',5'-cyclic monophosphorothioate, Rp-isomer (Rp-cAMPS). In dynamic perifusion assays of human or rat islets, a step-wise increase of glucose concentration leads to biphasic insulin secretion, and under these conditions, 8-bromoadenosine-3',5'-cyclic monophosphorothioate, Rp-isomer, 4-acetoxybenzyl ester (Rp-8-Br-cAMPS-pAB) inhibits first-phase GSIS by up to 80%. Surprisingly, second-phase GSIS is inhibited to a much smaller extent (≤20%). Using luciferase, fluorescence resonance energy transfer, and bioluminescence resonance energy transfer assays performed in living cells, we validate that Rp-8-Br-cAMPS-pAB does in fact block cAMP-dependent protein kinase activation. Novel effects of Rp-8-Br-cAMPS-pAB to block the activation of cAMP-regulated guanine nucleotide exchange factors (Epac1, Epac2) are also validated using genetically encoded Epac biosensors, and are independently confirmed in an in vitro Rap1 activation assay using Rp-cAMPS and Rp-8-Br-cAMPS. Thus, in addition to revealing the cAMP dependence of first-phase GSIS from human and rat islets, these findings establish a pAB-based chemistry for the synthesis of highly membrane permeable prodrug derivatives of Rp-cAMPS that act with micromolar or even nanomolar potency to inhibit cAMP signaling in living cells.


Asunto(s)
8-Bromo Monofosfato de Adenosina Cíclica/análogos & derivados , AMP Cíclico/farmacología , Glucosa/farmacología , Insulina/metabolismo , Profármacos/farmacología , Tionucleótidos/farmacología , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Animales , Alcohol Bencilo/farmacología , Línea Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citosol/metabolismo , Activación Enzimática/efectos de los fármacos , Esterasas/metabolismo , Femenino , Transferencia Resonante de Energía de Fluorescencia , Regulación de la Expresión Génica/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/metabolismo , Holoenzimas/metabolismo , Humanos , Secreción de Insulina , Integrasas/metabolismo , Luciferasas/metabolismo , Masculino , Persona de Mediana Edad , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
3.
Mol Endocrinol ; 27(8): 1267-82, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23798572

RESUMEN

GPR119 is a G protein-coupled receptor expressed on enteroendocrine L-cells that synthesize and secrete the incretin hormone glucagon-like peptide-1 (GLP-1). Although GPR119 agonists stimulate L-cell GLP-1 secretion, there is uncertainty concerning whether GLP-1 biosynthesis is under the control of GPR119. Here we report that GPR119 is functionally coupled to increased proglucagon (PG) gene expression that constitutes an essential first step in GLP-1 biosynthesis. Using a mouse L-cell line (GLUTag) that expresses endogenous GPR119, we demonstrate that PG gene promoter activity is stimulated by GPR119 agonist AS1269574. Surprisingly, transfection of GLUTag cells with recombinant human GPR119 (hGPR119) results in a constitutive and apparently ligand-independent increase of PG gene promoter activity and PG mRNA content. These constitutive actions of hGPR119 are mediated by cAMP-dependent protein kinase (PKA) but not cAMP sensor Epac2. Thus, the constitutive action of hGPR119 to stimulate PG gene promoter activity is diminished by: 1) a dominant-negative Gαs protein, 2) a dominant-negative PKA regulatory subunit, and 3) a dominant-negative A-CREB. Interestingly, PG gene promoter activity is stimulated by 6-Bn-cAMP-AM, a cAMP analog that selectively activates α and ß isoforms of type II, but not type I PKA regulatory subunits expressed in GLUTag cells. Finally, our analysis reveals that a specific inhibitor of Epac2 activation (ESI-05) fails to block the stimulatory action of 6-Bn-cAMP-AM at the PG gene promoter, nor is PG gene promoter activity stimulated by: 1) a constitutively active Epac2, or 2) cAMP analogs that selectively activate Epac proteins. Such findings are discussed within the context of ongoing controversies concerning the relative contributions of PKA and Epac2 to the control of PG gene expression.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Proglucagón/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Línea Celular , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células Enteroendocrinas , Etanolaminas/farmacología , Regulación de la Expresión Génica , Péptido 1 Similar al Glucagón/biosíntesis , Péptido 1 Similar al Glucagón/metabolismo , Factores de Intercambio de Guanina Nucleótido/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/genética , Células HEK293 , Humanos , Incretinas/biosíntesis , Incretinas/metabolismo , Células L , Ratones , Proglucagón/biosíntesis , Proglucagón/genética , Regiones Promotoras Genéticas , Pirimidinas/farmacología , ARN Mensajero/biosíntesis , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes de Fusión/metabolismo , Transfección
4.
Prog Biophys Mol Biol ; 107(2): 236-47, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21782840

RESUMEN

Insulin secretion from pancreatic ß cells is stimulated by glucagon-like peptide-1 (GLP-1), a blood glucose-lowering hormone that is released from enteroendocrine L cells of the distal intestine after the ingestion of a meal. GLP-1 mimetics (e.g., Byetta) and GLP-1 analogs (e.g., Victoza) activate the ß cell GLP-1 receptor (GLP-1R), and these compounds stimulate insulin secretion while also lowering levels of blood glucose in patients diagnosed with type 2 diabetes mellitus (T2DM). An additional option for the treatment of T2DM involves the administration of dipeptidyl peptidase-IV (DPP-IV) inhibitors (e.g., Januvia, Galvus). These compounds slow metabolic degradation of intestinally released GLP-1, thereby raising post-prandial levels of circulating GLP-1 substantially. Investigational compounds that stimulate GLP-1 secretion also exist, and in this regard a noteworthy advance is the demonstration that small molecule GPR119 agonists (e.g., AR231453) stimulate L cell GLP-1 secretion while also directly stimulating ß cell insulin release. In this review, we summarize what is currently known concerning the signal transduction properties of the ß cell GLP-1R as they relate to insulin secretion. Emphasized are the cyclic AMP, protein kinase A, and Epac2-mediated actions of GLP-1 to regulate ATP-sensitive K⁺ channels, voltage-dependent K⁺ channels, TRPM2 cation channels, intracellular Ca⁺ release channels, and Ca⁺-dependent exocytosis. We also discuss new evidence that provides a conceptual framework with which to understand why GLP-1R agonists are less likely to induce hypoglycemia when they are administered for the treatment of T2DM.


Asunto(s)
Péptido 1 Similar al Glucagón/metabolismo , Incretinas/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Humanos , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/patología
5.
Islets ; 3(3): 121-8, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21478675

RESUMEN

Glucose-stimulated insulin secretion (GSIS) from pancreatic ß-cells is potentiated by cAMP-elevating agents, such as the incretin hormone glucagon-like peptide-1 (GLP-1), and cAMP exerts its insulin secretagogue action by activating both protein kinase A (PKA) and the cAMP-regulated guanine nucleotide exchange factor designated as Epac2. Although prior studies of mouse islets demonstrated that Epac2 acts via Rap1 GTPase to potentiate GSIS, it is not understood which downstream targets of Rap1 promote the exocytosis of insulin. Here, we measured insulin secretion stimulated by a cAMP analog that is a selective activator of Epac proteins in order to demonstrate that a Rap1-regulated phospholipase C-epsilon (PLC-ε) links Epac2 activation to the potentiation of GSIS. Our analysis demonstrates that the Epac activator 8-pCPT-2'-O-Me-cAMP-AM potentiates GSIS from the islets of wild-type (WT) mice, whereas it has a greatly reduced insulin secretagogue action in the islets of Epac2 (-/-) and PLC-ε (-/-) knockout (KO) mice. Importantly, the insulin secretagogue action of 8-pCPT-2'-O-Me-cAMP-AM in WT mouse islets cannot be explained by an unexpected action of this cAMP analog to activate PKA, as verified through the use of a FRET-based A-kinase activity reporter (AKAR3) that reports PKA activation. Since the KO of PLC-ε disrupts the ability of 8-pCPT-2'-O-Me-cAMP-AM to potentiate GSIS, while also disrupting its ability to stimulate an increase of ß-cell [Ca2+]i, the available evidence indicates that it is a Rap1-regulated PLC-ε that links Epac2 activation to Ca2+-dependent exocytosis of insulin.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Células Secretoras de Insulina/fisiología , Insulina/fisiología , Fosfoinositido Fosfolipasa C/metabolismo , Animales , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacología , Transferencia Resonante de Energía de Fluorescencia , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/enzimología , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Noqueados
6.
Islets ; 2(2): 72-81, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20428467

RESUMEN

Clinical studies demonstrate that combined administration of sulfonylureas with exenatide can induce hypoglycemia in type 2 diabetic subjects. Whereas sulfonylureas inhibit ß-cell K(ATP) channels by binding to the sulfonylurea receptor-1 (SUR1), exenatide binds to the GLP-1 receptor, stimulates ß-cell cAMP production and activates both PKA and Epac. In this study, we hypothesized that the adverse in vivo interaction of sulfonylureas and exenatide to produce hypoglycemia might be explained by Epac-mediated facilitation of K(ATP) channel sulfonylurea sensitivity. We now report that the inhibitory action of a sulfonylurea (tolbutamide) at K(ATP) channels was facilitated by 2'-O-Me-cAMP, a selective activator of Epac. Thus, under conditions of excised patch recording, the dose-response relationship describing the inhibitory action of tolbutamide at human ß-cell or rat INS-1 cell K(ATP) channels was left-shifted in the presence of 2'-O-Me-cAMP, and this effect was abolished in INS-1 cells expressing a dominant-negative Epac2. Using an acetoxymethyl ester prodrug of an Epac-selective cAMP analog (8-pCP T-2'-O-Me-cAMP-AM), the synergistic interaction of an Epac activator and tolbutamide to depolarize INS-1 cells and to raise [Ca²(+)](i) was also measured. This effect of 8-pCP T-2'-O-Me-cAMP-AM correlated with its ability to stimulate phosphatidylinositol 4,5-bisphosphate hydrolysis that might contribute to the changes in K(ATP) channel sulfonylurea-sensitivity reported here. On the basis of such findings, we propose that the adverse interaction of sulfonylureas and exenatide to induce hypoglycemia involves at least in part, a functional interaction of these two compounds to close K(ATP) channels, to depolarize ß-cells and to promote insulin secretion.


Asunto(s)
AMP Cíclico/análogos & derivados , Factores de Intercambio de Guanina Nucleótido/agonistas , Células Secretoras de Insulina/efectos de los fármacos , Canales KATP/metabolismo , Compuestos de Sulfonilurea/farmacología , Animales , Células Cultivadas , AMP Cíclico/farmacología , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Humanos , Hipoglucemiantes/farmacología , Células Secretoras de Insulina/metabolismo , Canales KATP/efectos de los fármacos , Ratas , Especificidad por Sustrato/efectos de los fármacos , Tolbutamida/farmacología
7.
Islets ; 1(3): 260-5, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-21099281

RESUMEN

Epac2 is a cAMP-regulated guanine nucleotide exchange factor (cAMP-GEF) that is proposed to mediate stimulatory actions of the second messenger cAMP on mouse islet insulin secretion. Here we have used methods of islet perifusion to demonstrate that the acetoxymethyl ester (AM-ester) of an Epac-selective cAMP analog (ESCA) penetrates into mouse islets and is capable of potentiating both first and second phases of glucose-stimulated insulin secretion (GSIS). When used at low concentrations (1-10 µM), 8-pCPT-2'-O-Me-cAMP-AM activates Rap1 GTPase but exhibits little or no ability to activate protein kinase A (PKA), as validated in assays of in vitro PKA activity (phosphorylation of Kemptide), Ser (133) CREB phosphorylation status, RIP1-CRE-Luc reporter gene activity, and PKA-dependent AKAR3 biosensor activation. Since quantitative PCR demonstrates Epac2 mRNA to be expressed at levels ca. 5.3-fold greater than that of Epac1, available evidence indicates that Epac2 does in fact mediate stimulatory actions of cAMP on mouse islet GSIS.


Asunto(s)
AMP Cíclico/análogos & derivados , Glucosa/farmacología , Factores de Intercambio de Guanina Nucleótido/agonistas , Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Animales , Células Cultivadas , AMP Cíclico/administración & dosificación , AMP Cíclico/química , AMP Cíclico/farmacología , Combinación de Medicamentos , Sinergismo Farmacológico , Glucosa/administración & dosificación , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Ratones
8.
J Biol Chem ; 284(16): 10728-36, 2009 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-19244230

RESUMEN

To ascertain the identities of cyclic nucleotide-binding proteins that mediate the insulin secretagogue action of cAMP, the possible contributions of the exchange protein directly activated by cAMP (Epac) and protein kinase A (PKA) were evaluated in a pancreatic beta cell line (rat INS-1 cells). Assays of Rap1 activation, CREB phosphorylation, and PKA-dependent gene expression were performed in combination with live cell imaging and high throughput screening of a fluorescence resonance energy transfer-based cAMP sensor (Epac1-camps) to validate the selectivity with which acetoxymethyl esters (AM-esters) of cAMP analogs preferentially activate Epac or PKA. Selective activation of Epac or PKA was achieved following exposure of INS-1 cells to 8-pCPT-2'-O-Me-cAMP-AM or Bt(2)cAMP-AM, respectively. Both cAMP analogs exerted dose-dependent and glucose metabolism-dependent actions to stimulate insulin secretion, and when each was co-administered with the other, a supra-additive effect was observed. Because 2.4-fold more insulin was secreted in response to a saturating concentration (10 microm) of Bt(2)cAMP-AM as compared with 8-pCPT-2'-O-Me-cAMP-AM, and because the action of Bt(2)cAMP-AM but not 8-pCPT-2'-O-Me-cAMP-AM was nearly abrogated by treatment with 3 microm of the PKA inhibitor H-89, it is concluded that for INS-1 cells, it is PKA that acts as the dominant cAMP-binding protein in support of insulin secretion. Unexpectedly, 10-100 microm of the non-AM-ester of 8-pCPT-2'-O-Me-cAMP failed to stimulate insulin secretion and was a weak activator of Rap1 in INS-1 cells. Moreover, 10 microm of the AM-ester of 8-pCPT-2'-O-Me-cAMP stimulated insulin secretion from mouse islets, whereas the non-AM-ester did not. Thus, the membrane permeability of 8-pCPT-2'-O-Me-cAMP in insulin-secreting cells is so low as to limit its biological activity. It is concluded that prior reports documenting the failure of 8-pCPT-2'-O-Me-cAMP to act in beta cells, or other cell types, need to be re-evaluated through the use of the AM-ester of this cAMP analog.


Asunto(s)
AMP Cíclico/análogos & derivados , Factores de Intercambio de Guanina Nucleótido/metabolismo , Insulina/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Animales , Línea Celular , AMP Cíclico/química , AMP Cíclico/metabolismo , AMP Cíclico/farmacología , Activación Enzimática , Factores de Intercambio de Guanina Nucleótido/genética , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Isoquinolinas/metabolismo , Ratones , Inhibidores de Proteínas Quinasas/metabolismo , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sulfonamidas/metabolismo , Proteínas de Unión al GTP rap1/genética
9.
J Biol Chem ; 278(10): 8279-85, 2003 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-12496249

RESUMEN

The second messenger cAMP exerts powerful stimulatory effects on Ca(2+) signaling and insulin secretion in pancreatic beta-cells. Previous studies of beta-cells focused on protein kinase A (PKA) as a downstream effector of cAMP action. However, it is now apparent that cAMP also exerts its effects by binding to cAMP-regulated guanine nucleotide exchange factors (Epac). Although one effector of Epac is the Ras-related G protein Rap1, it is not fully understood what the functional consequences of Epac-mediated signal transduction are at the cellular level. 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3'-5'-cyclic monophosphate (8-pCPT-2'-O-Me-cAMP) is a newly described cAMP analog, and it activates Epac but not PKA. Here we demonstrate that 8-pCPT-2'-O-Me-cAMP acts in human pancreatic beta-cells and INS-1 insulin-secreting cells to mobilize Ca(2+) from intracellular Ca(2+) stores via Epac-mediated Ca(2+)-induced Ca(2+) release (CICR). The cAMP-dependent increase of [Ca(2+)](i) that accompanies CICR is shown to be coupled to exocytosis. We propose that the interaction of cAMP and Epac to trigger CICR explains, at least in part, the blood glucose-lowering properties of an insulinotropic hormone (glucagon-like peptide-1, also known as GLP-1) now under investigation for use in the treatment of type-2 diabetes mellitus.


Asunto(s)
Calcio/metabolismo , AMP Cíclico/farmacología , Exocitosis/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Células Cultivadas , AMP Cíclico/análogos & derivados , Electroquímica , Humanos , Inmunohistoquímica , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Proteínas Luminiscentes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA