RESUMEN
The growth of complex populations, such as microbial communities, forests, and cities, occurs over vastly different spatial and temporal scales. Although research in different fields has developed detailed, system-specific models to understand each individual system, a unified analysis of different complex populations is lacking; such an analysis could deepen our understanding of each system and facilitate cross-pollination of tools and insights across fields. Here, we use a shared framework to analyze time-series data of the human gut microbiome, tropical forest, and urban employment. We demonstrate that a single, three-parameter model of stochastic population dynamics can reproduce the empirical distributions of population abundances and fluctuations in all three datasets. The three parameters characterizing a species measure its mean abundance, deterministic stability, and stochasticity. Our analysis reveals that, despite the vast differences in scale, all three systems occupy a similar region of parameter space when time is measured in generations. In other words, although the fluctuations observed in these systems may appear different, this difference is primarily due to the different physical timescales associated with each system. Further, we show that the distribution of temporal abundance fluctuations is described by just two parameters and derive a two-parameter functional form for abundance fluctuations to improve risk estimation and forecasting.
Asunto(s)
Bosques , Microbiota , Humanos , Población Urbana , Dinámica Poblacional , CiudadesRESUMEN
Microbiome engineering offers the potential to leverage microbial communities to improve outcomes in human health, agriculture, and climate. To translate this potential into reality, it is crucial to reliably predict community composition and function. But a brute force approach to cataloging community function is hindered by the combinatorial explosion in the number of ways we can combine microbial species. An alternative is to parameterize microbial community outcomes using simplified, mechanistic models, and then extrapolate these models beyond where we have sampled. But these approaches remain data-hungry, as well as requiring an a priori specification of what kinds of mechanisms are included and which are omitted. Here, we resolve both issues by introducing a mechanism-agnostic approach to predicting microbial community compositions and functions using limited data. The critical step is the identification of a sparse representation of the community landscape. We then leverage this sparsity to predict community compositions and functions, drawing from techniques in compressive sensing. We validate this approach on in silico community data, generated from a theoretical model. By sampling just [Formula: see text]1% of all possible communities, we accurately predict community compositions out of sample. We then demonstrate the real-world application of our approach by applying it to four experimental datasets and showing that we can recover interpretable, accurate predictions on composition and community function from highly limited data.
Asunto(s)
Aprendizaje Automático , MicrobiotaRESUMEN
SignificanceMetabolism relies on a small class of molecules (coenzymes) that serve as universal donors and acceptors of key chemical groups and electrons. Although metabolic networks crucially depend on structurally redundant coenzymes [e.g., NAD(H) and NADP(H)] associated with different enzymes, the criteria that led to the emergence of this redundancy remain poorly understood. Our combination of modeling and structural and sequence analysis indicates that coenzyme redundancy may not be essential for metabolism but could rather constitute an evolved strategy promoting efficient usage of enzymes when biochemical reactions are near equilibrium. Our work suggests that early metabolism may have operated with fewer coenzymes and that adaptation for metabolic efficiency may have driven the rise of coenzyme diversity in living systems.
Asunto(s)
Coenzimas , NAD , Coenzimas/metabolismo , NAD/metabolismo , NADP/metabolismoRESUMEN
Assembling optimal microbial communities is key for various applications in biofuel production, agriculture, and human health. Finding the optimal community is challenging because the number of possible communities grows exponentially with the number of species, and so an exhaustive search cannot be performed even for a dozen species. A heuristic search that improves community function by adding or removing one species at a time is more practical, but it is unknown whether this strategy can discover an optimal or nearly optimal community. Using consumer-resource models with and without cross-feeding, we investigate how the efficacy of search depends on the distribution of resources, niche overlap, cross-feeding, and other aspects of community ecology. We show that search efficacy is determined by the ruggedness of the appropriately-defined ecological landscape. We identify specific ruggedness measures that are both predictive of search performance and robust to noise and low sampling density. The feasibility of our approach is demonstrated using experimental data from a soil microbial community. Overall, our results establish the conditions necessary for the success of the heuristic search and provide concrete design principles for building high-performing microbial consortia.
Asunto(s)
Microbiota , Microbiología del Suelo , Humanos , Consorcios Microbianos , AgriculturaRESUMEN
Traveling fronts describe the transition between two alternative states in a great number of physical and biological systems. Examples include the spread of beneficial mutations, chemical reactions, and the invasions by foreign species. In homogeneous environments, the alternative states are separated by a smooth front moving at a constant velocity. This simple picture can break down in structured environments such as tissues, patchy landscapes, and microfluidic devices. Habitat fragmentation can pin the front at a particular location or lock invasion velocities into specific values. Locked velocities are not sensitive to moderate changes in dispersal or growth and are determined by the spatial and temporal periodicity of the environment. The synchronization with the environment results in discontinuous fronts that propagate as periodic pulses. We characterize the transition from continuous to locked invasions and show that it is controlled by positive density-dependence in dispersal or growth. We also demonstrate that velocity locking is robust to demographic and environmental fluctuations and examine stochastic dynamics and evolution in locked invasions.
Asunto(s)
Modelos Biológicos , Dinámica Poblacional , Algoritmos , Ecosistema , ReproducciónRESUMEN
The dynamics of microbial communities is complex, determined by competition for metabolic substrates and cross-feeding of byproducts. Species in the community grow by harvesting energy from chemical reactions that transform substrates to products. In many anoxic environments, these reactions are close to thermodynamic equilibrium and growth is slow. To understand the community structure in these energy-limited environments, we developed a microbial community consumer-resource model incorporating energetic and thermodynamic constraints on an interconnected metabolic network. The central element of the model is product inhibition, meaning that microbial growth may be limited not only by depletion of metabolic substrates but also by accumulation of products. We demonstrate that these additional constraints on microbial growth cause a convergence in the structure and function of the community metabolic network-independent of species composition and biochemical details-providing a possible explanation for convergence of community function despite taxonomic variation observed in many natural and industrial environments. Furthermore, we discovered that the structure of community metabolic network is governed by the thermodynamic principle of maximum free energy dissipation. Our results predict the decrease of functional convergence in faster growing communities, which we validate by analyzing experimental data from anaerobic digesters. Overall, the work demonstrates how universal thermodynamic principles may constrain community metabolism and explain observed functional convergence in microbial communities.
Asunto(s)
Microbiota , Microbiota/fisiología , Redes y Vías Metabólicas , TermodinámicaRESUMEN
Many microbes grow diauxically, utilizing the available resources one at a time rather than simultaneously. The properties of communities of microbes growing diauxically remain poorly understood, largely due to a lack of theory and models of such communities. Here, we develop and study a minimal model of diauxic microbial communities assembling in a serially diluted culture. We find that unlike co-utilizing communities, diauxic community assembly repeatably and spontaneously leads to communities with complementary resource preferences, namely communities where species prefer different resources as their top choice. Simulations and theory explain that the emergence of complementarity is driven by the disproportionate contribution of the top choice resource to the growth of a diauxic species. Additionally, we develop a geometric approach for analyzing serially diluted communities, with or without diauxie, which intuitively explains several additional emergent community properties, such as the apparent lack of species which grow fastest on a resource other than their most preferred resource. Overall, our work provides testable predictions for the assembly of natural as well as synthetic communities of diauxically shifting microbes.