RESUMEN
High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species1-4. To address this issue, the international Genome 10K (G10K) consortium5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences.
Asunto(s)
Genoma , Genómica/métodos , Vertebrados/genética , Animales , Aves , Biblioteca de Genes , Tamaño del Genoma , Genoma Mitocondrial , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de ADN , Cromosomas Sexuales/genéticaRESUMEN
Our understanding of bird song, a model system for animal communication and the neurobiology of learning, depends critically on making reliable, validated comparisons between the complex multidimensional syllables that are used in songs. However, most assessments of song similarity are based on human inspection of spectrograms, or computational methods developed from human intuitions. Using a novel automated operant conditioning system, we collected a large corpus of zebra finches' (Taeniopygia guttata) decisions about song syllable similarity. We use this dataset to compare and externally validate similarity algorithms in widely-used publicly available software (Raven, Sound Analysis Pro, Luscinia). Although these methods all perform better than chance, they do not closely emulate the avian assessments. We then introduce a novel deep learning method that can produce perceptual similarity judgements trained on such avian decisions. We find that this new method outperforms the established methods in accuracy and more closely approaches the avian assessments. Inconsistent (hence ambiguous) decisions are a common occurrence in animal behavioural data; we show that a modification of the deep learning training that accommodates these leads to the strongest performance. We argue this approach is the best way to validate methods to compare song similarity, that our dataset can be used to validate novel methods, and that the general approach can easily be extended to other species.
Asunto(s)
Aprendizaje Profundo , Pinzones , Vocalización Animal , Animales , Vocalización Animal/fisiología , Pinzones/fisiología , Algoritmos , Biología Computacional/métodos , Juicio/fisiología , Masculino , Espectrografía del Sonido/métodos , Condicionamiento Operante/fisiología , HumanosRESUMEN
A species' success during the invasion of new areas hinges on an interplay between the demographic processes common to invasions and the specific ecological context of the novel environment. Evolutionary genetic studies of invasive species can investigate how genetic bottlenecks and ecological conditions shape genetic variation in invasions, and our study pairs two invasive populations that are hypothesized to be from the same source population to compare how each population evolved during and after introduction. Invasive European starlings (Sturnus vulgaris) established populations in both Australia and North America in the 19th century. Here, we compare whole-genome sequences among native and independently introduced European starling populations to determine how demographic processes interact with rapid evolution to generate similar genetic patterns in these recent and replicated invasions. Demographic models indicate that both invasive populations experienced genetic bottlenecks as expected based on invasion history, and we find that specific genomic regions have differentiated even on this short evolutionary timescale. Despite genetic bottlenecks, we suggest that genetic drift alone cannot explain differentiation in at least two of these regions. The demographic boom intrinsic to many invasions as well as potential inversions may have led to high population-specific differentiation, although the patterns of genetic variation are also consistent with the hypothesis that this infamous and highly mobile invader adapted to novel selection (e.g., extrinsic factors). We use targeted sampling of replicated invasions to identify and evaluate support for multiple, interacting evolutionary mechanisms that lead to differentiation during the invasion process.
RESUMEN
Prolonged social isolation has negative effects on brain and behavior in humans and other social organisms, but neural mechanisms leading to these effects are not understood. Here we tested the hypothesis that even brief periods of social isolation can alter gene expression and DNA methylation in higher cognitive centers of the brain, focusing on the auditory/associative forebrain of the highly social zebra finch. Using RNA sequencing, we first identified genes that individually increase or decrease expression after isolation and observed general repression of gene sets annotated for neurotrophin pathways and axonal guidance functions. We then pursued 4 genes of large effect size: EGR1 and BDNF (decreased by isolation) and FKBP5 and UTS2B (increased). By in situ hybridization, each gene responded in different cell subsets, arguing against a single cellular mechanism. To test whether effects were specific to the social component of the isolation experience, we compared gene expression in birds isolated either alone or with a single familiar partner. Partner inclusion ameliorated the effect of solo isolation on EGR1 and BDNF, but not on FKBP5 and UTS2B nor on circulating corticosterone. By bisulfite sequencing analysis of auditory forebrain DNA, isolation caused changes in methylation of a subset of differentially expressed genes, including BDNF. Thus, social isolation has rapid consequences on gene activity in a higher integrative center of the brain, triggering epigenetic mechanisms that may influence processing of ongoing experience.
Asunto(s)
Pinzones/genética , Prosencéfalo/metabolismo , Aislamiento Social , Animales , Conducta Animal , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corticosterona/sangre , Metilación de ADN , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Pinzones/sangre , Pinzones/fisiología , Masculino , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismoRESUMEN
Aortitis is a classic manifestation of large vessel vasculitis. Antiphospholipid syndrome (APS), sometimes known as Hughes syndrome, is an acquired autoimmune disorder that manifests clinically as recurrent venous or arterial thrombosis. Patients with APS may also suffer from various underlying diseases, most frequently systemic lupus erythematosus (SLE). Catastrophic antiphospholipid syndrome (CAPS) is a rare but serious complication of APS characterized by failure of several organs due to diffuse microcirculatory thrombi. Its main manifestations involve the kidneys, lungs, heart and central nervous system, and require early diagnosis and rapid therapeutic management. While APS can affect virtually any blood vessel, aortitis is not a known symptom of APS. We report the case of a 36-year-old patient with APS and SLE who presented with CAPS during pregnancy, with no concomitant SLE flare. The first manifestation of CAPS was aortitis, preceding renal, cardiac and haematological manifestations. The outcome was favourable with combined treatment including corticosteroids, anticoagulants, plasma exchange and rituximab. We then carried out a literature search for papers describing the presence of aortitis in APS and/or SLE. In the cases of aortic involvement identified in the literature, including another case of CAPS, the occurrence of aortitis in SLE, often associated with the presence of antiphospholipid antibodies/APS, suggests that aortitis should be considered as an under-recognized manifestation and potential non-criterion feature of APS.
Asunto(s)
Síndrome Antifosfolípido , Aortitis , Lupus Eritematoso Sistémico , Trombosis , Adulto , Anticuerpos Antifosfolípidos , Síndrome Antifosfolípido/complicaciones , Síndrome Antifosfolípido/diagnóstico , Aortitis/complicaciones , Aortitis/etiología , Femenino , Humanos , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/diagnóstico , Microcirculación , EmbarazoRESUMEN
Sound is an essential source of information in many taxa and can notably be used by embryos to programme their phenotypes for postnatal environments. While underlying mechanisms are mostly unknown, there is growing evidence for the involvement of mitochondria-main source of cellular energy (i.e. ATP)-in developmental programming processes. Here, we tested whether prenatal sound programmes mitochondrial metabolism. In the arid-adapted zebra finch, prenatal exposure to 'heat-calls'-produced by parents incubating at high temperatures-adaptively alters nestling growth in the heat. We measured red blood cell mitochondrial function, in nestlings exposed prenatally to heat- or control-calls, and reared in contrasting thermal environments. Exposure to high temperatures always reduced mitochondrial ATP production efficiency. However, as expected to reduce heat production, prenatal exposure to heat-calls improved mitochondrial efficiency under mild heat conditions. In addition, when exposed to an acute heat-challenge, LEAK respiration was higher in heat-call nestlings, and mitochondrial efficiency low across temperatures. Consistent with its role in reducing oxidative damage, LEAK under extreme heat was also higher in fast growing nestlings. Our study therefore provides the first demonstration of mitochondrial acoustic sensitivity, and brings us closer to understanding the underpinning of acoustic developmental programming and avian strategies for heat adaptation.
Asunto(s)
Pinzones , Efectos Tardíos de la Exposición Prenatal , Aclimatación , Acústica , Adenosina Trifosfato/metabolismo , Animales , Pinzones/fisiología , Calor , Mitocondrias/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , TemperaturaRESUMEN
The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken-the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.
Asunto(s)
Pinzones/genética , Genoma/genética , Regiones no Traducidas 3'/genética , Animales , Percepción Auditiva/genética , Encéfalo/fisiología , Pollos/genética , Evolución Molecular , Femenino , Pinzones/fisiología , Duplicación de Gen , Redes Reguladoras de Genes/genética , Masculino , MicroARNs/genética , Modelos Animales , Familia de Multigenes/genética , Retroelementos/genética , Cromosomas Sexuales/genética , Secuencias Repetidas Terminales/genética , Transcripción Genética/genética , Vocalización Animal/fisiologíaRESUMEN
Modifications to the gene encoding human α-synuclein have been linked to the development of Parkinson's disease. The highly conserved structure of α-synuclein suggests a functional interaction with membranes, and several lines of evidence point to a role in vesicle-related processes within nerve terminals. Using recombinant fusions of human α-synuclein, including new genetic tags developed for correlated light microscopy and electron microscopy (the tetracysteine-biarsenical labeling system or the new fluorescent protein for electron microscopy, MiniSOG), we determined the distribution of α-synuclein when overexpressed in primary neurons at supramolecular and cellular scales in three dimensions (3D). We observed specific association of α-synuclein with a large and otherwise poorly characterized membranous organelle system of the presynaptic terminal, as well as with smaller vesicular structures within these boutons. Furthermore, α-synuclein was localized to multiple elements of the protein degradation pathway, including multivesicular bodies in the axons and lysosomes within neuronal cell bodies. Examination of synapses in brains of transgenic mice overexpressing human α-synuclein revealed alterations of the presynaptic endomembrane systems similar to our findings in cell culture. Three-dimensional electron tomographic analysis of enlarged presynaptic terminals in several brain areas revealed that these terminals were filled with membrane-bounded organelles, including tubulovesicular structures similar to what we observed in vitro. We propose that α-synuclein overexpression is associated with hypertrophy of membrane systems of the presynaptic terminal previously shown to have a role in vesicle recycling. Our data support the conclusion that α-synuclein is involved in processes associated with the sorting, channeling, packaging, and transport of synaptic material destined for degradation.
Asunto(s)
Neuronas/química , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/análisis , alfa-Sinucleína/biosíntesis , Animales , Células Cultivadas , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Microscopía Electrónica/métodos , Microscopía de Polarización/métodos , Neuronas/ultraestructura , Enfermedad de Parkinson/patología , Ratas , Ratas Sprague-Dawley , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/ultraestructura , alfa-Sinucleína/genéticaRESUMEN
Cultural and genetic inheritance combine to enable rapid changes in trait expression, but their relative importance in determining trait expression across generations is not clear. Birdsong is a socially learned cognitive trait that is subject to both cultural and genetic inheritance, as well as being affected by early developmental conditions. We sought to test whether early-life conditions in one generation can affect song acquisition in the next generation. We exposed one generation (F1) of nestlings to elevated corticosterone (CORT) levels, allowed them to breed freely as adults, and quantified their son's (F2) ability to copy the song of their social father. We also quantified the neurogenetic response to song playback through immediate early gene (IEG) expression in the auditory forebrain. F2 males with only one corticosterone-treated parent copied their social father's song less accurately than males with two control parents. Expression of ARC in caudomedial nidopallium (NCM) correlated with father-son song similarity, and patterns of expression levels of several IEGs in caudomedial mesopallium (CMM) in response to father song playback differed between control F2 sons and those with a CORT-treated father only. This is the first study to demonstrate that developmental conditions can affect social learning and neurogenetic responses in a subsequent generation.
Asunto(s)
Corticosterona , Aprendizaje , Vocalización Animal , Animales , Vocalización Animal/fisiología , Masculino , Aprendizaje/fisiología , Corticosterona/metabolismo , Femenino , Pinzones/fisiología , Prosencéfalo/metabolismo , Prosencéfalo/fisiología , Genes Inmediatos-PrecocesRESUMEN
α-Synuclein (AS) is associated with both sporadic and familial forms of Parkinson disease (PD). In sporadic disease, wild-type AS fibrillates and accumulates as Lewy bodies within dopaminergic neurons of the substantia nigra. The accumulation of misfolded AS is associated with the death of these neurons, which underlies many of the clinical features of PD. In addition, a rare missense mutation in AS, A30P, is associated with highly penetrant, autosomal dominant PD, although the pathogenic mechanism is unclear. A30P AS fibrillates more slowly than the wild-type (WT) protein in vitro and has been reported to preferentially adopt a soluble, protofibrillar conformation. This has led to speculation that A30P forms aggregates that are distinct in structure compared with wild-type AS. Here, we perform a detailed comparison of the chemical shifts and secondary structures of these fibrillar species, based upon our recent characterization of full-length WT fibrils. We have assigned A30P AS fibril chemical shifts de novo and used them to determine its secondary structure empirically. Our results illustrate that although A30P forms fibrils more slowly than WT in vitro, the chemical shifts and secondary structure of the resultant fibrils are in high agreement, demonstrating a conserved ß-sheet core.
Asunto(s)
Proteínas Mutantes/química , Mutación , Resonancia Magnética Nuclear Biomolecular , Multimerización de Proteína , alfa-Sinucleína/química , Humanos , Cinética , Proteínas Mutantes/genética , Estructura Secundaria de Proteína , alfa-Sinucleína/genéticaRESUMEN
The disruption of α-synuclein (α-syn) homeostasis in neurons is a potential cause of Parkinson's disease, which is manifested pathologically by the appearance of α-syn aggregates, or Lewy bodies. Treatments for neurological diseases are extremely limited. To study the potential use of gold nanoparticles (Au NPs) to limit α-syn misfolding, the binding and orientation of α-syn on Au NPs were investigated. α-Syn was determined to interact with 20 and 90 nm Au NPs via multilayered adsorption: a strong electrostatic interaction between α-syn and Au NPs in the hard corona and a weaker noncovalent protein-protein interaction in the soft corona. Spectroscopic and light-scattering titrations led to the determinations of binding constants for the Au NP α-syn coronas: for the hard corona on 20 nm Au NPs, the equilibrium association constant was 2.9 ± 1.1 × 10(9) M(-1) (for 360 ± 70 α-syn/NP), and on 90 nm Au NPs, the hard corona association constant was 9.5 ± 0.8 × 10(10) M(-1) (for 5300 ± 700 α-syn/NP). The binding of the soft corona was thermodynamically unfavorable and kinetically driven and was in constant exchange with "free" α-syn in solution. A protease digestion method was used to deduce the α-syn orientation and structure on Au NPs, revealing that α-syn absorbs onto negatively charged Au NPs via its N-terminus while apparently retaining its natively unstructured conformation. These results suggest that Au NPs could be used to sequester and regulate α-syn homeostasis.
Asunto(s)
Oro/química , Nanopartículas del Metal/química , alfa-Sinucleína/química , Adsorción , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular , Tamaño de la Partícula , Unión Proteica , Proteolisis , Espectrometría de Fluorescencia , Tripsina/metabolismo , alfa-Sinucleína/metabolismoRESUMEN
α-Synuclein (AS) fibrils are the main protein component of Lewy bodies, the pathological hallmark of Parkinson's disease and other related disorders. AS forms helices that bind phospholipid membranes with high affinity, but no atomic level data for AS aggregation in the presence of lipids is yet available. Here, we present direct evidence of a conversion from α-helical conformation to ß-sheet fibrils in the presence of anionic phospholipid vesicles and direct conversion to ß-sheet fibrils in their absence. We have trapped intermediate states throughout the fibril formation pathways to examine the structural changes using solid-state NMR spectroscopy and electron microscopy. The comparison between mature AS fibrils formed in aqueous buffer and those derived in the presence of anionic phospholipids demonstrates no major changes in the overall fibril fold. However, a site-specific comparison of these fibrillar states demonstrates major perturbations in the N-terminal domain with a partial disruption of the long ß-strand located in the 40s and small perturbations in residues located in the "non-ß amyloid component" (NAC) domain. Combining all these results, we propose a model for AS fibrillogenesis in the presence of phospholipid vesicles.
Asunto(s)
Fosfolípidos/química , alfa-Sinucleína/química , Microscopía Electrónica , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Estructura Secundaria de ProteínaRESUMEN
Left-right asymmetries in the nervous system (lateralisation) influence a broad range of behaviours, from social responses to navigation and language. The role and pathways of endogenous and environmental mechanisms in the ontogeny of lateralisation remains to be established. The domestic chick is a model of both endogenous and experience-induced lateralisation driven by light exposure. Following the endogenous rightward rotation of the embryo, the asymmetrical position in the egg results in a greater exposure of the right eye to environmental light. To identify the genetic pathways activated by asymmetric light stimulation, and their time course, we exposed embryos to different light regimes: darkness, 6 h of light and 24 h of light. We used RNA-seq to compare gene expression in the right and left retinas and telencephalon. We detected differential gene expression in right vs left retina after 6 h of light exposure. This difference was absent in the darkness condition and had already disappeared by 24 h of light exposure, suggesting that light-induced activation is a self-terminating phenomenon. This transient effect of light exposure was associated with a downregulation of the sensitive-period mediator gene DIO2 (iodothyronine deiodinase 2) in the right retina. No differences between genes expressed in the right vs. left telencephalon were detected. Gene networks associated with lateralisation were connected to vascularisation, cell motility, and the extracellular matrix. Interestingly, we know that the extracellular matrix-including the differentially expressed PDGFRB gene-is involved in morphogenesis, sensitive periods, and in the endogenous chiral mechanism of primary cilia, that drives lateralisation. Our data show a similarity between endogenous and experience-driven lateralisation, identifying functional gene networks that affect lateralisation in a specific time window.
Asunto(s)
Pollos , Lateralidad Funcional , Animales , Pollos/fisiología , Matriz Extracelular , Lateralidad Funcional/fisiología , Expresión Génica , RetinaRESUMEN
A recent report from the Institute of Medicine of the National Academies (IOM) calls for states to amend regulations on the practice of advanced practice registered nurses (APRNs). This article reviews the roles of APRNs, the IOM recommendations, and efforts by national and state stakeholders to remove legal barriers to APRN practice.
Asunto(s)
Enfermería de Práctica Avanzada/legislación & jurisprudencia , Reforma de la Atención de Salud/legislación & jurisprudencia , Política de Salud/legislación & jurisprudencia , Certificación , Educación en Enfermería/organización & administración , Humanos , Licencia en Enfermería , National Academies of Science, Engineering, and Medicine, U.S., Health and Medicine Division , North Carolina , Formulación de Políticas , Competencia Profesional , Estados UnidosRESUMEN
Serotonin is an important neurotransmitter of the brain, but its role in song control remains to be fully demonstrated. Using male zebra finches (Taeniopygia guttata) that have song learning and production capabilities, we analysed the serotonin expression levels in the song nuclei and adjacent areas (peri-song nuclei) using immunohistochemistry. Key song nuclei were identified using combinations of Hoechst, choline acetyltransferase, and a neurofilament (NN18) marker in reference to the ZEBrA atlas. Mean serotonin expression was highest in interfacial nucleus (Nif) and lower in the other song nuclei in the following order (in order of highest first): interfacial nucleus (Nif)â¯>â¯Area Xâ¯>â¯dorsomedial part of the intercollicular nucelus (DM)â¯>â¯robust nucleus of the archistriatum (RA)â¯>â¯lateral magnocellular nucleus of the anterior neostriatum (LMAN)â¯>â¯ventral respiratory group (VRG)â¯>â¯dorsolateral nucleus of the medial thalamus (DLM)â¯>â¯the nucleus HVC (proper name)â¯>â¯tracheosyringeal motor nucleus (nXIIts). However, the mean serotonin expression (in order of highest first) in the peri-song nuclei regions was: peri-DMâ¯>â¯peri-nXIItsâ¯>â¯supra-peri-HVCâ¯>â¯peri-RAâ¯>â¯peri-DLMâ¯>â¯peri-Area Xâ¯>â¯infra-peri-HVCâ¯>â¯peri-VRGâ¯>â¯peri-LMANâ¯>â¯peri-Nif. Interestingly, serotoninergic fibers immunostained for serotonin or the serotonin transporter can be found as a basket-like peri-neuronal structure surrounding cholinergic cell bodies, and appear to form contacts onto dopaminergic neurones. In summary, serotonin fibers are present at discrete song nuclei, and peri-song nuclei regions, which suggest serotonin may have a direct and/or modulatory role in song control.
Asunto(s)
Pinzones , Vocalización Animal , Animales , Encéfalo , Mapeo Encefálico , Masculino , SerotoninaRESUMEN
Songbirds communicate through learned vocalizations, using a forebrain circuit with convergent similarity to vocal-control circuitry in humans. This circuit is incomplete in female zebra finches, hence only males sing. We show that the UTS2B gene, encoding Urotensin-Related Peptide (URP), is uniquely expressed in a key pre-motor vocal nucleus (HVC), and specifically marks the neurons that form a male-specific projection that encodes timing features of learned song. UTS2B-expressing cells appear early in males, prior to projection formation, but are not observed in the female nucleus. We find no expression evidence for canonical receptors within the vocal circuit, suggesting either signalling to other brain regions via diffusion or transduction through other receptor systems. Urotensins have not previously been implicated in vocal control, but we find an annotation in Allen Human Brain Atlas of increased UTS2B expression within portions of human inferior frontal cortex implicated in human speech and singing. Thus UTS2B (URP) is a novel neural marker that may have conserved functions for vocal communication.
Asunto(s)
Prosencéfalo/metabolismo , Pájaros Cantores/fisiología , Urotensinas/genética , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Masculino , Caracteres Sexuales , Pájaros Cantores/genética , Urotensinas/metabolismo , Vocalización AnimalRESUMEN
Endosulfine-alpha (ENSA) is a 121-residue cAMP-regulated phosphoprotein, originally identified as an endogenous regulator of ATP-sensitive potassium channels. ENSA has been implicated in the regulation of insulin secretion, and expression of ENSA is decreased in brains of both Alzheimer's disease (AD) and Down's syndrome patients. We recently described membrane-dependent interactions between ENSA and the Parkinson's disease associated protein alpha-synuclein. Here we characterize the conformational change in ENSA that occurs upon binding to membranes. Secondary chemical shift analysis demonstrates formation of four helices in the lipid-bound state that are not present in the absence of lipid. The helical structure is maintained in several different lipid mimetics (sodium dodecyl sulfate, dodecyl phosphocholine, lyso 1-palmitoyl phosphatidylglycerol, and phospholipid vesicles). Introduction of a mutation (S109E) to mimic PKA phosphorylation of ENSA leads to a perturbation of the fourth helix and disrupts the interaction with alpha-synuclein. These data establish ENSA as an intrinsically unstructured protein that adopts a stable structure upon membrane binding, properties it shares with its binding partner alpha-synuclein.
Asunto(s)
Membrana Celular/metabolismo , Péptidos/química , Péptidos/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Pliegue de Proteína , Materiales Biomiméticos/metabolismo , Materiales Biomiméticos/farmacología , Cromatografía en Gel , Dicroismo Circular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Glucolípidos/metabolismo , Glucolípidos/farmacología , Fosfatos de Inositol/metabolismo , Fosfatos de Inositol/farmacología , Péptidos y Proteínas de Señalización Intercelular , Espectroscopía de Resonancia Magnética , Micelas , Fosfolípidos/metabolismo , Fosfolípidos/farmacología , Fosforilación , Unión Proteica/efectos de los fármacos , Estructura Secundaria de Proteína/efectos de los fármacos , Dodecil Sulfato de Sodio/metabolismo , Dodecil Sulfato de Sodio/farmacología , alfa-Sinucleína/metabolismoRESUMEN
BACKGROUND: Songbirds hold great promise for biomedical, environmental and evolutionary research. A complete draft sequence of the zebra finch genome is imminent, yet a need remains for application of genomic resources within a research community traditionally focused on ethology and neurobiological methods. In response, we developed a core set of genomic tools and a novel collaborative strategy to probe gene expression in diverse songbird species and natural contexts. RESULTS: We end-sequenced cDNAs from zebra finch brain and incorporated additional sequences from community sources into a database of 86,784 high quality reads. These assembled into 31,658 non-redundant contigs and singletons, which we annotated via BLAST search of chicken and human databases. The results are publicly available in the ESTIMA:Songbird database. We produced a spotted cDNA microarray with 20,160 addresses representing 17,214 non-redundant products of an estimated 11,500-15,000 genes, validating it by analysis of immediate-early gene (zenk) gene activation following song exposure and by demonstrating effective cross hybridization to genomic DNAs of other songbird species in the Passerida Parvorder. Our assembly was also used in the design of the "Lund-zfa" Affymetrix array representing approximately 22,000 non-redundant sequences. When the two arrays were hybridized to cDNAs from the same set of male and female zebra finch brain samples, both arrays detected a common set of regulated transcripts with a Pearson correlation coefficient of 0.895. To stimulate use of these resources by the songbird research community and to maintain consistent technical standards, we devised a "Community Collaboration" mechanism whereby individual birdsong researchers develop experiments and provide tissues, but a single individual in the community is responsible for all RNA extractions, labelling and microarray hybridizations. CONCLUSION: Immediately, these results set the foundation for a coordinated set of 25 planned experiments by 16 research groups probing fundamental links between genome, brain, evolution and behavior in songbirds. Energetic application of genomic resources to research using songbirds should help illuminate how complex neural and behavioral traits emerge and evolve.
Asunto(s)
Encéfalo/metabolismo , Biología Computacional/métodos , Evolución Molecular , Regulación de la Expresión Génica , Genómica/métodos , Pájaros Cantores/genética , Estimulación Acústica , Animales , Secuencia de Bases , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis de Secuencia de ADN , Pájaros Cantores/fisiología , Especificidad de la Especie , Activación TranscripcionalRESUMEN
Neuropathological and genetic findings suggest that the presynaptic protein α-synuclein (aSyn) is involved in the pathogenesis of synucleinopathy disorders, including Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy. Evidence suggests that the self-assembly of aSyn conformers bound to phospholipid membranes in an aggregation-prone state plays a key role in aSyn neurotoxicity. Accordingly, we hypothesized that protein binding partners of lipid-associated aSyn could inhibit the formation of toxic aSyn oligomers at membrane surfaces. To address this hypothesis, we characterized the protein endosulfine-alpha (ENSA), previously shown to interact selectively with membrane-bound aSyn, in terms of its effects on the membrane-induced aggregation and neurotoxicity of two familial aSyn mutants, A30P and G51D. We found that wild-type ENSA, but not the non-aSyn-binding S109E variant, interfered with membrane-induced aSyn self-assembly, aSyn-mediated vesicle disruption and aSyn neurotoxicity. Immunoblotting analyses revealed that ENSA was down-regulated in the brains of synucleinopathy patients versus non-diseased individuals. Collectively, these results suggest that ENSA can alleviate neurotoxic effects of membrane-bound aSyn via an apparent chaperone-like activity at the membrane surface, and a decrease in ENSA expression may contribute to aSyn neuropathology in synucleinopathy disorders. More generally, our findings suggest that promoting interactions between lipid-bound, amyloidogenic proteins and their binding partners is a viable strategy to alleviate cytotoxicity in a range of protein misfolding disorders.
Asunto(s)
Membrana Celular/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Péptidos/farmacología , Agregación Patológica de Proteínas/tratamiento farmacológico , alfa-Sinucleína/efectos de los fármacos , Adenoviridae , Anciano , Anciano de 80 o más Años , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Membrana Celular/metabolismo , Células Cultivadas , Estudios de Cohortes , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Escherichia coli , Femenino , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/patología , Masculino , Persona de Mediana Edad , Fármacos Neuroprotectores/metabolismo , Péptidos/metabolismo , Agregación Patológica de Proteínas/metabolismo , Ratas Sprague-Dawley , Proteínas Recombinantes/efectos de los fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Liposomas Unilamelares/química , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismoRESUMEN
Misfolded α-synuclein amyloid fibrils are the principal components of Lewy bodies and neurites, hallmarks of Parkinson's disease (PD). We present a high-resolution structure of an α-synuclein fibril, in a form that induces robust pathology in primary neuronal culture, determined by solid-state NMR spectroscopy and validated by EM and X-ray fiber diffraction. Over 200 unique long-range distance restraints define a consensus structure with common amyloid features including parallel, in-register ß-sheets and hydrophobic-core residues, and with substantial complexity arising from diverse structural features including an intermolecular salt bridge, a glutamine ladder, close backbone interactions involving small residues, and several steric zippers stabilizing a new orthogonal Greek-key topology. These characteristics contribute to the robust propagation of this fibril form, as supported by the structural similarity of early-onset-PD mutants. The structure provides a framework for understanding the interactions of α-synuclein with other proteins and small molecules, to aid in PD diagnosis and treatment.