RESUMEN
The replacement of diseased and damaged organs remains an challenge in modern medicine. However, through the use of tissue engineering techniques, it may soon be possible to (re)generate tissues and organs using artificial scaffolds. For example, hydrogel networks made from hydrophilic precursor solutions can replicate many properties found in the natural extracellular matrix (ECM) but often lack the dynamic nature of the ECM, as many covalently crosslinked hydrogels possess elastic and static networks with nanoscale pores hindering cell migration without being degradable. To overcome this, macroporous colloidal hydrogels can be prepared to facilitate cell infiltration. Here, an easy method is presented to fabricate granular cellulose nanofibril hydrogel (CNF) scaffolds as porous networks for 3D cell cultivation. CNF is an abundant natural and highly biocompatible material that supports cell adhesion. Granular CNF scaffolds are generated by pre-crosslinking CNF using calcium and subsequently pressing the gel through micrometer-sized nylon meshes. The granular solution is mixed with fibroblasts and crosslinked with cell culture medium. The obtained granular CNF scaffold is significantly softer and enables well-distributed fibroblast growth. This cost-effective material combined with this efficient and facile fabrication technique allows for 3D cell cultivation in an upscalable manner.
Asunto(s)
Celulosa , Hidrogeles , Materiales Biocompatibles , Porosidad , Ingeniería de Tejidos , Andamios del TejidoRESUMEN
Peripheral nerves, subject to continuous elongation and compression during everyday movement, contain neuron fibers vital for movement and sensation. At supraphysiological strains resulting from trauma, chronic conditions, aberrant limb positioning, or surgery, conduction blocks occur which may result in chronic or temporary loss of function. Previous in vitro stretch models, mainly focused on traumatic brain injury modelling, have demonstrated altered electrophysiological behavior during localized deformation applied by pipette suction. Our aim was to evaluate the changes in voltage-activated ion channel function during uniaxial straining of neurons applied by whole-cell deformation, more physiologically relevant model of peripheral nerve trauma. Here, we quantified experimentally the changes in inwards and outwards ion currents and action potential (AP) firing in dorsal root ganglion-derived neurons subject to uniaxial strains, using a custom-built device allowing simultaneous cell deformation and patch clamp recording. Peak inwards sodium currents and rectifying potassium current magnitudes were found to decrease in cells under stretch, channel reversal potentials were found to be left-shifted, and half-maximum activation potentials right-shifted. The threshold for AP firing was increased in stretched cells, although neurons retained the ability to fire induced APs. Overall, these results point to ion channels being damaged directly and immediately by uniaxial strain, affecting cell electrophysiological activity, and can help develop prevention and treatment strategies for peripheral neuropathies caused by mechanical trauma.
Asunto(s)
Potenciales de Acción/fisiología , Activación del Canal Iónico/fisiología , Neuronas/fisiología , Traumatismos de los Nervios Periféricos/fisiopatología , Animales , Línea Celular Tumoral , Ganglios Espinales , Potenciales de la Membrana/fisiología , Neuroblastoma , Técnicas de Placa-Clamp , Ratas , SodioRESUMEN
OBJECTIVES: To test a 3D approach for neural network formation, alignment, and patterning that is reproducible and sufficiently stable to allow for easy manipulation. RESULTS: A novel cell culture system was designed by engineering a method for the directional growth of neurons. This uses NG108-15 neuroblastoma x glioma hybrid cells cultured on suspended and aligned electrospun fibers. These fiber networks improved cellular directionality, with alignment angle standard deviations significantly lower on fibers than on regular culture surfaces. Morphological studies found nuclear aspect ratios and cell projection lengths to be unchanged, indicating that cells maintained neural morphology while growing on fibers and forming a 3D network. Furthermore, fibronectin-coated fibers enhanced neurite extensions for all investigated time points. Differentiated neurons exhibited significant increases in average neurite lengths 96 h post plating, and formed neurite extensions parallel to suspended fibers, as visualized through scanning electron microscopy. CONCLUSIONS: The developed model has the potential to serve as the basis for advanced 3D studies, providing an original approach to neural network patterning and setting the groundwork for further investigations into functionality.
Asunto(s)
Técnicas de Cultivo de Célula/métodos , Técnicas Electroquímicas/métodos , Modelos Neurológicos , Fibras Nerviosas/fisiología , Red Nerviosa/citología , Ingeniería de Tejidos/métodos , Animales , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Línea Celular Tumoral , Diseño de Equipo , Fibronectinas/farmacología , Glioma , Neuritas/fisiología , Neuroblastoma , Poliésteres , RatasRESUMEN
The cases of brain degenerative disease will rise as the human population ages. Current treatments have a transient effect and lack an investigative system that is physiologically relevant for testing. There is evidence suggesting optogenetic stimulation is a potential strategy; however, an in vitro disease and optogenetic model requires a three-dimensional microenvironment. Alginate is a promising material for tissue and optogenetic engineering. Although it is bioinert, alginate hydrogel is transparent and therefore allows optical penetration for stimulation. In this study, alginate was functionalized with arginine-glycine-aspartate acid (RGD) to serve as a 3D platform for encapsulation of human SH-SY5Y cells, which were optogenetically modified and characterized. The RGD-alginate hydrogels were tested for swelling and degradation. Prior to encapsulation, the cells were assessed for neuronal expression and optical-stimulation response. The results showed that RGD-alginate possessed a consistent swelling ratio of 18% on day 7, and degradation remained between 3.7−5% throughout 14 days. Optogenetically modified SH-SY5Y cells were highly viable (>85%) after lentiviral transduction and neuronal differentiation. The cells demonstrated properties of functional neurons, developing beta III tubulin (TuJ1)-positive long neurites, forming neural networks, and expressing vGlut2. Action potentials were produced upon optical stimulation. The neurons derived from human SH-SY5Y cells were successfully genetically modified and encapsulated; they survived and expressed ChR2 in an RGD-alginate hydrogel system.
RESUMEN
To reflect human development, it is critical to create a substrate that can support long-term cell survival, differentiation, and maturation. Hydrogels are promising materials for 3D cultures. However, a bulk structure consisting of dense polymer networks often leads to suboptimal microenvironments that impedes nutrient exchange and cell-to-cell interaction. Herein, granular hydrogel-based scaffolds were used to support 3D human induced pluripotent stem cell (hiPSC)-derived neural networks. A custom designed 3D printed toolset was developed to extrude hyaluronic acid hydrogel through a porous nylon fabric to generate hydrogel granules. Cells and hydrogel granules were combined using a weaker secondary gelation step, forming self-supporting cell laden scaffolds. At three and seven days, granular scaffolds supported higher cell viability compared to bulk hydrogels, whereas granular scaffolds supported more neurite bearing cells and longer neurite extensions (65.52 ± 11.59 µm) after seven days compared to bulk hydrogels (22.90 ± 4.70 µm). Long-term (three-month) cultures of clinically relevant hiPSC-derived neural cells in granular hydrogels supported well established neuronal and astrocytic colonies and a high level of neurite extension both inside and beyond the scaffold. This approach is significant as it provides a simple, rapid and efficient way to achieve a tissue-relevant granular structure within hydrogel cultures.
RESUMEN
The development of techniques to create and use multiphase microstructured hydrogels (granular hydrogels or microgels) has enabled the generation of cultures with more biologically relevant architecture and use of structured hydrogels is especially pertinent to the development of new types of central nervous system (CNS) culture models and therapies. We review material choice and the customisation of hydrogel structure, as well as the use of hydrogels in developmental models. Combining the use of structured hydrogel techniques with developmentally relevant tissue culture approaches will enable the generation of more relevant models and treatments to repair damaged CNS tissue architecture.
Asunto(s)
Hidrogeles , Ingeniería de Tejidos , Sistema NerviosoRESUMEN
Peripheral nerves are continuously subjected to mechanical strain during everyday movements, but excessive stretch can lead to damage and neuronal cell functionality can also be impaired. To better understand cellular processes triggered by stretch, it is necessary to develop in vitro experimental methods that allow multiple concurrent measurements and replicate in vivo mechanical conditions. Current commercially available cell stretching devices do not allow flexible experimental design, restricting the range of possible multi-physics measurements. Here, we describe and characterise a custom-built uniaxial substrate-straining device, with which neurons cultured on aligned patterned surfaces (50 µm wide grooves) can be strained up to 70% and simultaneously imaged with widefield and confocal imaging (up to 100x magnification). Furthermore, direct and indirect electrophysiological measurements by patch clamping and calcium imaging can be made during strain application. We characterise the strain applied to cells cultured in deformable wells by using finite element method simulations and experimental data, showing local surface strains of up to 60% with applied strains of up to 25%. We also show how patterned substrates do not alter the mechanical properties of the system compared to unpatterned surfaces whilst still inducing a homogeneous cell response to strain. The characterisation of this device will be useful for research into investigating the effect of whole-cell mechanical stretch on neurons at both single cell and network scales, with applications found in peripheral neuropathy modelling and in platforms for preventive and regenerative studies.
Asunto(s)
Electrofisiología/instrumentación , Ingeniería , Imagen Molecular/instrumentación , Neuronas/citología , Nervios Periféricos/citología , Estrés Mecánico , Fenómenos Biomecánicos , Calcio/metabolismo , Humanos , Neuronas/metabolismo , Análisis de la Célula Individual , Factores de TiempoRESUMEN
Peripheral nerves contain neuron fibers vital for movement and sensation and are subject to continuous elongation and compression during everyday movement. At supraphysiological strains conduction blocks occur, resulting in permanent or temporary loss of function. The mechanisms underpinning these alterations in electrophysiological activity remain unclear; however, there is evidence that both ion channels and network synapses may be affected through cell membrane transmitted strain. The aim of this work was to quantify the changes in spontaneous activity resulting from application of uniaxial strain in a human iPS-derived motor neuron culture model, and to investigate the role of cell membrane mechanical properties during cell straining. Increasing strain in a custom-built cell-stretching device caused a linear decrease in spontaneous activity, and no immediate recovery of activity was observed after strain release. Imaging neuronal membranes with c-Laurdan showed changes to the lipid order in neural membranes during deformation with a decrease in lipid packing. Neural cell membrane stiffness can be modulated by increasing cholesterol content, resulting in reduced stretch-induced decrease of membrane lipid packing and in a reduced decrease in spontaneous activity caused by mechanical strain. Together these results indicate that the mechanism whereby cell injury causes impaired transmission of neural impulses may be governed by the mechanical state of the cell membrane, and contribute to establishing a direct relationship between neural uniaxial straining and loss of spontaneous neural activity.
Asunto(s)
Potenciales de Acción/fisiología , Membrana Celular/fisiología , Fenómenos Electrofisiológicos/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Neuronas Motoras/fisiología , Estrés Mecánico , Células Cultivadas , HumanosRESUMEN
Development of an optogenetically controllable human neural network model in three-dimensional (3D) cultures can provide an investigative system that is more physiologically relevant and better able to mimic aspects of human brain function. Light-sensitive neurons were generated by transducing channelrhodopsin-2 (ChR2) into human induced pluripotent stem cell (hiPSC) derived neural progenitor cells (Axol) using lentiviruses and cell-type specific promoters. A mixed population of human iPSC-derived cortical neurons, astrocytes and progenitor cells were obtained (Axol-ChR2) upon neural differentiation. Pan-neuronal promoter synapsin-1 (SYN1) and excitatory neuron-specific promoter calcium-calmodulin kinase II (CaMKII) were used to drive reporter gene expression in order to assess the differentiation status of the targeted cells. Expression of ChR2 and characterisation of subpopulations in differentiated Axol-ChR2 cells were evaluated using flow cytometry and immunofluorescent staining. These cells were transferred from 2D culture to 3D alginate hydrogel functionalised with arginine-glycine-aspartate (RGD) and small molecules (Y-27632). Improved RGD-alginate hydrogel was physically characterised and assessed for cell viability to serve as a generic 3D culture system for human pluripotent stem cells (hPSCs) and neuronal cells. Prior to cell encapsulation, neural network activities of Axol-ChR2 cells and primary neurons were investigated using calcium imaging. Results demonstrate that functional activities were successfully achieved through expression of ChR2- by both the CaMKII and SYN1 promoters. The RGD-alginate hydrogel system supports the growth of differentiated Axol-ChR2 cells whilst allowing detection of ChR2 expression upon light stimulation. This allows precise and non-invasive control of human neural networks in 3D.
Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Técnicas de Cultivo de Célula/métodos , Channelrhodopsins/metabolismo , Células Madre Pluripotentes Inducidas/citología , Neuronas/citología , Optogenética , Regiones Promotoras Genéticas/genética , Sinapsinas/genética , Alginatos/farmacología , Animales , Calcio/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Lentivirus/metabolismo , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Reología , Sinapsinas/metabolismoRESUMEN
Electrospinning uses an electric field to produce fine fibers of nano and micron scale diameters from polymer solutions. Despite innovation in jet initiation, jet path control and fiber collection, it is common to only fabricate planar and tubular-shaped electrospun products. For applications that encapsulate cells and tissues inside a porous container, it is useful to develop biocompatible hollow core-containing devices. To this end, by introducing a 3D-printed framework containing a sodium chloride pellet (sacrificial core) as the collector and through post-electrospinning dissolution of the sacrificial core, we demonstrate that hollow core containing polyamide 66 (nylon 66) devices can be easily fabricated for use as cell encapsulation systems. ATR-FTIR and TG/DTA studies were used to verify that the bulk properties of the electrospun device were not altered by contact with the salt pellet during fiber collection. Protein diffusion investigations demonstrated that the capsule allowed free diffusion of model biomolecules (insulin, albumin and Ig G). Cell encapsulation studies with model cell types (fibroblasts and lymphocytes) revealed that the capsule supports the viability of encapsulated cells inside the capsule whilst compartmentalizing immune cells outside of the capsule. Taken together, the use of a salt pellet as a sacrificial core within a 3D printed framework to support fiber collection, as well as the ability to easily remove this core using aqueous dissolution, results in a biocompatible device that can be tailored for use in cell and tissue encapsulation applications.
RESUMEN
Microporous membranes support the growth of neurites into and through micro-channels, providing a different type of neural growth platform to conventional dish cultures. Microporous membranes are used to support various types of culture, however, the role of pore diameter in relation to neurite growth through the membrane has not been well characterised. In this study, the human cell line (SH-SY5Y) was differentiated into neuron-like cells and cultured on track-etched microporous membranes with pore and channel diameters selected to accommodate neurite width (0.8 µm to 5 µm). Whilst neurites extended through all pore diameters, the extent of neurite coverage on the non-seeded side of the membranes after 5 days in culture was found to be directly proportional to channel diameter. Neurite growth through membrane pores reduced significantly when neural cultures were non-confluent. Scanning electron microscopy revealed that neurites bridged pores and circumnavigated pore edges - such that the overall likelihood of a neurite entering a pore channel was decreased. These findings highlight the role of pore diameter, cell sheet confluence and contact guidance in directing neurite growth through pores and may be useful in applications that seek to use physical substrates to maintain separate neural populations whilst permitting neurite contact between cultures.
Asunto(s)
Técnicas de Cultivo de Célula/métodos , Proliferación Celular , Membranas , Neuritas/fisiología , Línea Celular , Humanos , Microscopía Electrónica de Rastreo , Neuritas/ultraestructuraRESUMEN
Primary rodent neurons and immortalised cell lines have overwhelmingly been used for in vitro studies of traumatic injury to peripheral and central neurons, but have some limitations of physiological accuracy. Motor neurons (MN) derived from human induced pluripotent stem cells (iPSCs) enable the generation of cell models with features relevant to human physiology. To facilitate this, it is desirable that MN protocols both rapidly and efficiently differentiate human iPSCs into electrophysiologically active MNs. In this study, we present a simple, rapid protocol for differentiation of human iPSCs into functional spinal (lower) MNs, involving only adherent culture and use of small molecules for directed differentiation, with the ultimate aim of rapid production of electrophysiologically functional cells for short-term neural injury experiments. We show successful differentiation in two unrelated iPSC lines, by quantifying neural-specific marker expression, and by evaluating cell functionality at different maturation stages by calcium imaging and patch clamping. Differentiated neurons were shown to be electrophysiologically altered by uniaxial mechanical deformation. Spontaneous network activity decreased with applied stretch, indicating aberrant network connectivity. These results demonstrate the feasibility of this rapid, simple protocol for differentiating iPSC-derived MNs, suitable for in vitro neural injury studies focussing on electrophysiological alterations caused by mechanical deformation or trauma.
Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Neuronas Motoras/citología , Diferenciación Celular/fisiología , Células Cultivadas , Electrofisiología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas Motoras/metabolismoRESUMEN
Research on the neuromuscular junction (NMJ) and its function and development spans over a century. However, researchers are limited in their ability to conduct experimentation on this highly specialized synapse between motor neurons and muscle fibers, as NMJs are not easily accessible outside the body. The aim of this work is to provide a reliable and reproducible muscle sheet model for in vitro NMJ study. A novel culture system was designed by engineering a method for the directional growth of myofiber sheets, using muscle progenitor cells cultured on electrospun fiber networks. Myoblastic C2C12 cells cultured on suspended aligned fibers were found to maintain directionality, with alignment angle standard deviations approximately two-thirds lower on fibers than on regular culture surfaces. Morphological studies found nuclei and cytoskeleton aspect ratios to be elongated by 20 and 150%, respectively. Furthermore, neurons were shown to form innervation patterns parallel to suspended fibers when co-cultured on developed muscle sheets, with alignment angle standard deviations three times lower compared with those on typical surfaces. The effect of agrin on samples was quantified through the slow release of agrin medium, encapsulated in alginate pellets and imbedded within culture chambers. Samples exposed to agrin showed significantly increased percentage of AChR-covered area. The developed model has potential to serve as the basis for synaptogenesis and NMJ studies, providing a novel approach to bio-artificial muscle alignment and setting the groundwork for further investigations in innervation. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1165-1176, 2018.
Asunto(s)
Músculos/fisiología , Poliésteres/farmacología , Ingeniería de Tejidos/métodos , Animales , Diferenciación Celular , Línea Celular , Forma de la Célula , Dextranos/química , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/química , Humanos , Ratones , Fibras Musculares Esqueléticas/metabolismo , Receptores Colinérgicos/metabolismo , PorcinosRESUMEN
Materials that enhance bone and cartilage regeneration promise to be valuable in both research and clinical applications. Both natural and synthetic polymers can be used to create scaffolds that support cells and incorporate cues which guide tissue repair. Recently, electrospinning, peptide self-assembly and biomineralisation have been employed to fabricate nanostructured scaffolds that better mimic the complex extracellular environment found within tissues, in vivo. The incorporation of peptide motifs recognised by cell receptors and the use of recombinant DNA technology have enabled the creation of scaffolds with new levels of biofunctionality. Advances in materials design will enhance our ability to create highly tailored cellular environments for bone and cartilage regeneration.
Asunto(s)
Materiales Biocompatibles , Huesos/fisiología , Cartílago/fisiología , Regeneración , Ingeniería de TejidosRESUMEN
The plastic-adherent, fibroblast-like, clonogenic cells found in the human body now defined as multipotent "Mesenchymal Stromal Cells" (MSCs) hold immense potential for cell-based therapies. Recently, research and basic knowledge of these cells has fast-tracked, both from fundamental and translational perspectives. There have been important discoveries with respect to the available variety of tissue sources, the development of protocols for their easy isolation and in vitro expansion and for directed differentiation into various cell types. In addition, there has been discovery of novel abilities such as immune-modulation and further development of the use of biomaterials to aid isolation, expansion and differentiation together with improved delivery to the selected optimal tissue site. However, the molecular fingerprint of MSCs in these contexts remains imprecise and inadequate. Consequently, without this crucial knowledge it is difficult to achieve progress to determine with precision their practical developmental potentials. Detailed investigations on the global gene expression, or transcriptome, of MSCs could offer essential clues in this regard. In this article, we address the challenges associated with MSC transcriptome studies, the paradoxes observed in published experimental results and the need for careful transcriptomic analysis. We describe the exemplary applications with various transcriptome platforms that are used to address the variation in biomarkers and the identification of differentiation processes. The evolution and the potentials for adapting next-generation sequencing (NGS) technology in transcriptome analysis are discussed. Lastly, based on review of the existing understanding and published studies, we propose how NGS may be applied to promote further understanding of the biology of MSCs and their use in allied fields such as regenerative medicine.
Asunto(s)
Perfilación de la Expresión Génica , Células Madre Mesenquimatosas , Transcriptoma , Diferenciación Celular , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/tendencias , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Medicina RegenerativaRESUMEN
An in vitro three-dimensional (3D) cell culture system that can mimic organ and tissue structure and function in vivo will be of great benefit for drug discovery and toxicity testing. In this study, the neuroprotective properties of the three most prevalent flavonoid monomers extracted from EGb 761 (isorharmnetin, kaempferol, and quercetin) were investigated using the developed 3D stem cell-derived neural co-culture model. Rat neural stem cells were differentiated into co-culture of both neurons and astrocytes at an equal ratio in the developed 3D model and standard two-dimensional (2D) model using a two-step differentiation protocol for 14 days. The level of neuroprotective effect offered by each flavonoid was found to be aligned with its effect as an antioxidant and its ability to inhibit Caspase-3 activity in a dose-dependent manner. Cell exposure to quercetin (100 µM) following oxidative insult provided the highest levels of neuroprotection in both 2D and 3D models, comparable with exposure to 100 µM of Vitamin E, whilst exposure to isorhamnetin and kaempferol provided a reduced level of neuroprotection in both 2D and 3D models. At lower dosages (10 µM flavonoid concentration), the 3D model was more representative of results previously reported in vivo. The co-cultures of stem cell derived neurons and astrocytes in 3D hydrogel scaffolds as an in vitro neural model closely replicates in vivo results for routine neural drug toxicity and efficacy testing. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:735-744, 2016.
Asunto(s)
Flavonoides/farmacología , Modelos Biológicos , Células-Madre Neurales/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Animales , Células Cultivadas , Técnicas de Cocultivo , Flavonoides/química , Flavonoides/aislamiento & purificación , Ginkgo biloba , Células-Madre Neurales/citología , Neuronas/citología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , RatasRESUMEN
Electrical property characterization of stem cells could be utilized as a potential label-free biophysical approach to evaluate the differentiation process. However, there has been a lack of technology or tools that can quantify the intrinsic cellular electrical markers (e.g., specific membrane capacitance (Cspecific membrane) and cytoplasm conductivity (σcytoplasm)) for a large amount of stem cells or differentiated cells. In this paper, a microfluidic platform enabling the high-throughput quantification of Cspecific membrane and σcytoplasm from hundreds of single neural stem cells undergoing differentiation was developed to explore the feasibility to characterize the neural stem cell differentiation process without biochemical staining. Experimental quantification using biochemical markers (e.g., Nestin, Tubulin and GFAP) of neural stem cells confirmed the initiation of the differentiation process featured with gradual loss in cellular stemness and increased cell markers for neurons and glial cells. The recorded electrical properties of neural stem cells undergoing differentiation showed distinctive and unique patterns: 1) in the suspension culture before inducing differentiation, a large distribution and difference in σcytoplasm among individual neural stem cells was noticed, which indicated heterogeneity that may result from the nature of suspension culture of neurospheres; and 2) during the differentiation in adhering monolayer culture, significant changes and a large difference in Cspecific membrane were located indicating different expressions of membrane proteins during the differentiation process, and a small distribution difference in σcytoplasm was less significant that indicated the relatively consistent properties of cytoplasm during the culture. In summary, significant differences in Cspecific membrane and σcytoplasm were observed during the neural stem cell differentiation process, which may potentially be used as label-free biophysical markers to monitor this process.
Asunto(s)
Diferenciación Celular , Fenómenos Electrofisiológicos , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Animales , Técnicas de Cultivo de Célula , Membrana Celular/fisiología , Citoplasma , Capacidad Eléctrica , Impedancia Eléctrica , Perfilación de la Expresión Génica , RatasRESUMEN
INTRODUCTION: Mesenchymal stem cells (MSCs) have gained considerable interest due to their potential use in cell therapies and tissue engineering. They have been reported to differentiate into various anchorage-dependent cell types, including bone, cartilage, and tendon. Our focus is on the differentiation of MSCs into neuron-like cells through the use of soluble chemical stimuli or specific growth factor supplements. The resulting cells appear to adopt neural phenotypes and express some typical neuronal markers, however, their electrophysiological properties and synaptic function remains unclear. RESULTS: This mini-review illustrates how particular characteristics, electrophysiological properties, and synaptic functions of MSCs change during their neuronal differentiation. In particular we focus on changes in ion currents, ion channels, synaptic communication, and neurotransmitter release. We also highlight conflicting results, caused by inconsistencies in the experimental conditions used and in the methodologies adopted. CONCLUSIONS: We conclude that there is insufficient data and that further, carefully controlled investigations are required in order to ascertain whether MSC-derived neuron-like cells can exhibit the necessary neuronal functions to become clinically relevant for use in neural repairs.
Asunto(s)
Células Madre Mesenquimatosas/fisiología , Neurogénesis , Neuronas/fisiología , Transmisión Sináptica , Animales , Biomarcadores/metabolismo , Células Cultivadas , Humanos , Canales Iónicos/metabolismo , Potenciales de la Membrana , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Enfermedades Neurodegenerativas/cirugía , Neuronas/metabolismo , Neuronas/trasplante , Fenotipo , Medicina Regenerativa , Ingeniería de TejidosRESUMEN
The field of tissue engineering places complex demands on the materials it uses. The materials chosen to support the intricate processes of tissue development and maintenance need to have properties which serve both the bulk mechanical and structural requirements of the target tissue, as well as enabling interactions with cells at the molecular scale. In this critical review we explore how synthetic polymers can be utilised to meet the needs of tissue engineering applications, and how biomimetic principles can be applied to polymeric materials in order to enhance the biological response to scaffolding materials (105 references).
Asunto(s)
Polímeros/síntesis química , Polímeros/metabolismo , Ingeniería de Tejidos/métodos , Secuencia de Aminoácidos , Fenómenos Biomecánicos , Células/citología , Células/metabolismo , Humanos , Nanotecnología , Péptidos/química , Péptidos/metabolismoRESUMEN
Cells are inherently sensitive to local mesoscale, microscale, and nanoscale patterns of chemistry and topography. We review current approaches to control cell behavior through the nanoscale engineering of materials surfaces. Far-reaching implications are emerging for applications including medical implants, cell supports, and materials that can be used as instructive three-dimensional environments for tissue regeneration.